Plant Cell Reports

, Volume 31, Issue 7, pp 1227–1232 | Cite as

Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana

  • G. H. M. Sagor
  • Hideki Takahashi
  • Masaru Niitsu
  • Yoshihiro Takahashi
  • Thomas Berberich
  • Tomonobu KusanoEmail author
Original Paper


We previously proposed the defensive role of a signal pathway triggered by the polyamine spermine (Spm) in the reaction against avirulent viral pathogens in Nicotiana tabacum and Arabidopsis thaliana. In this study, we showed that thermospermine (T-Spm), an isomer of Spm, is also active in inducing the expression of the genes involved in the Spm-signal pathway at a similar dose as Spm. Furthermore, we found that T-Spm enhances the expression of a subset of pathogenesis-related genes whose expression is induced during cucumber mosaic virus (CMV)-triggered hypersensitive response. In consistent with the above observation, we further showed that exogenous T-Spm can repress CMV multiplication with same efficiency as Spm.

Key message

Polyamine thermospermine, an isomer of spermine, is able to induce a subset of hypersensitive response-related defense genes and can suppress cucumber mosaic virus multiplication in Arabidopsis thaliana.


Arabidopsis thaliana Cucumber mosaic virus Polyamine Signaling activity Spermine Thermospermine 



This work was supported in part by Grant-in-Aids from the Japan Society for the Promotion of Science (JSPS) to TK (21380063) and YT (21780087), and by the grant from The Saito Gratitude Foundation (to GHMS) and by the research funding programme “LOEWE-Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts (to TB). GHMS is a recipient of MEXT scholarship.

Supplementary material

299_2012_1243_MOESM1_ESM.doc (38 kb)
Supplementary material 1 (DOC 37 kb)


  1. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249PubMedCrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  3. Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138:767–777PubMedCrossRefGoogle Scholar
  4. Cohen SS (1998) A guide to the polyamines. Oxford University Press, OxfordGoogle Scholar
  5. Fuell C, Elliot KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem 48:513–520PubMedCrossRefGoogle Scholar
  6. Gao F, Su Q, Fan Y, Wang L et al (2010) Expression pattern and core region analysis of AtMPK3 promoter in response to environmental stresses. Sci China Life Sci 53:1315–1321PubMedCrossRefGoogle Scholar
  7. Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256PubMedCrossRefGoogle Scholar
  8. Hanzawa Y, Imai A, Michael AJ, Komeda Y, Takahashi T (2002) Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett 527:176–180PubMedCrossRefGoogle Scholar
  9. Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, Takahashi T (2004a) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152PubMedCrossRefGoogle Scholar
  10. Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004b) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573PubMedCrossRefGoogle Scholar
  11. Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102:5280–5285PubMedCrossRefGoogle Scholar
  12. Kakehi JI, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49:1342–1349PubMedCrossRefGoogle Scholar
  13. Knott JM, Römer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086PubMedCrossRefGoogle Scholar
  14. Koenig R (1981) Indirect ELISA methods for the broad specificity detection of plant viruses. J Gen Virol 55:53–62CrossRefGoogle Scholar
  15. Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381PubMedCrossRefGoogle Scholar
  16. Leavy M, Edelbaum O, Sela I (2004) Tobacco mosaic virus regulates the expression of its own resistance gene N. Plant Physiol 135:2392–2397CrossRefGoogle Scholar
  17. Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413PubMedCrossRefGoogle Scholar
  18. Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blázquez MA (2008) Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol 25:2119–2128PubMedCrossRefGoogle Scholar
  19. Mitsuya Y, Takahashi Y, Berberich T, Miyazaki A, Matsumura H, Takahashi H, Ryohei Terauchi, Kusano T et al (2009) Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus. J Plant Physiol 166:626–643PubMedCrossRefGoogle Scholar
  20. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  21. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746PubMedCrossRefGoogle Scholar
  22. Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270:1988–1992PubMedCrossRefGoogle Scholar
  23. Seo S, Okamoto M, Iwai T, Iwano M, Fukui K, Isogai A, Nakajima N, Ohashi Y (2000) Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12:917–932PubMedGoogle Scholar
  24. Shirzadegan M, Christie P, Seemann JR (1991) An efficient method for isolation of RNA from tissue cultured plant cells. Nucleic Acids Res 19:6055PubMedCrossRefGoogle Scholar
  25. Takahashi H, Goto N, Ehara Y (1994) Hypersensitive response in cucumber mosaic virus-inoculated Arabidopsis thaliana. Plant J 6:369–377CrossRefGoogle Scholar
  26. Takahashi H, Miller J, Nozaki Y, Sukamto, Takeda M, Shah J, Hase S, Ikegami M, Ehara Y, Dinesh-Kumar SP (2002) RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J 32:655–667PubMedCrossRefGoogle Scholar
  27. Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T (2003) Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant J 36:820–829PubMedCrossRefGoogle Scholar
  28. Takahashi Y, Uehara Y, Berberich T, Ito A, Saitoh H, Miyazaki A, Terauchi R, Kusano T (2004) A subset of the hypersensitive response marker genes including HSR203J is downstream target of a spermine-signal transduction pathway in tobacco. Plant J 40:586–595PubMedCrossRefGoogle Scholar
  29. Takatsuji H (1999) Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39:1073–1078PubMedCrossRefGoogle Scholar
  30. Thurau T, Kifle S, Jung C, Cai D et al (2003) The promoter of the nematode resistance gene Hs1pro-1 activates a nematode responsive and feeding site specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Mol. Biol. 52:643–660PubMedCrossRefGoogle Scholar
  31. Uehara Y, Takahashi Y, Berberich T, Miyazaki A, Takahashi H, Matsui K, Ohme-Takagi M, Saitoh H, Terauchi R, Kusano T (2005) Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway. Plant Mol Biol 59:435–448PubMedCrossRefGoogle Scholar
  32. Wang X, Xu Y, Han Y, Bao S, Du J, Yuan M, Xu Z, Chong K (2006) Overexpression of RAN1 in rice and Arabidopsis alter primordial meristem, mitotic progress and sensitivity to auxin. Plant Physiol 140:91–101PubMedCrossRefGoogle Scholar
  33. Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788PubMedCrossRefGoogle Scholar
  34. Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490PubMedCrossRefGoogle Scholar
  35. Yamakawa H, Kamada H, Satoh M, Ohashi Y (1998) Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiol 118:1213–1222PubMedCrossRefGoogle Scholar
  36. Zhang S, Klessig DF (1997) Salicylic acid activates a 48-kDa MAP kinase in tobacco. Plant Cell 9:809–824PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • G. H. M. Sagor
    • 1
  • Hideki Takahashi
    • 2
  • Masaru Niitsu
    • 3
  • Yoshihiro Takahashi
    • 1
  • Thomas Berberich
    • 4
  • Tomonobu Kusano
    • 1
    Email author
  1. 1.Graduate School of Life SciencesTohoku UniversitySendaiJapan
  2. 2.Graduate School of Agricultural SciencesTohoku UniversitySendaiJapan
  3. 3.Faculty of Pharmaceutical SciencesJosai UniversitySakadoJapan
  4. 4.Biodiversity and Climate Research Center (BiK-F), BioCampus-WestendFrankfurt am MainGermany

Personalised recommendations