Plant Cell Reports

, Volume 31, Issue 3, pp 439–451 | Cite as

The use of plants for the production of therapeutic human peptides

  • Chiara Lico
  • Luca Santi
  • Richard M. Twyman
  • Mario Pezzotti
  • Linda Avesani
Review

Abstract

Peptides have unique properties that make them useful drug candidates for diverse indications, including allergy, infectious disease and cancer. Some peptides are intrinsically bioactive, while others can be used to induce precise immune responses by defining a minimal immunogenic region. The limitations of peptides, such as metabolic instability, short half-life and low immunogenicity, can be addressed by strategies such as multimerization or fusion to carriers, to improve their pharmacological properties. The remaining major drawback is the cost of production using conventional chemical synthesis, which is also difficult to scale-up. Over the last 15 years, plants have been shown to produce bioactive and immunogenic peptides economically and with the potential for large-scale synthesis. The production of peptides in plants is usually achieved by the genetic fusion of the corresponding nucleotide sequence to that of a carrier protein, followed by stable nuclear or plastid transformation or transient expression using bacterial or viral vectors. Chimeric plant viruses or virus-like particles can also be used to display peptide antigens, allowing the production of polyvalent vaccine candidates. Here we review progress in the field of plant-derived peptides over the last 5 years, addressing new challenges for diverse pathologies.

Keywords

Therapeutic peptide Molecular pharming Transgenic plants Chimeric plant virus Plant-derived vaccine 

References

  1. Andrianova EP, Krementsugskaia SR, Lugovskaia NN, Mayorova TK, Borisov VV, Eldarov MA, Ravin NV, Folimonov AS, Skryabin KG (2011) Foot and mouth disease virus polyepitope protein produced in bacteria and plants induces protective immunity in guinea pigs. Biochemistry (Mosc) 76:339–346Google Scholar
  2. Arazi T, Slutsky SG, Shiboleth YM, Wang Y, Rubinstein M, Barak S, Yang J, Gal-On A (2001) Engineering zucchini yellow mosaic potyvirus as a non-pathogenic vector for expression of heterologous proteins in cucurbits. J Biotechnol 87:67–82PubMedGoogle Scholar
  3. Bandurska K, Brodzik R, Spitsin S, Kohl T, Portocarrero C, Smirnov Y, Pogrebnyak N, Sirko A, Koprowski H, Golovkin M (2008) Plant-produced hepatitis B core protein chimera carrying anthrax protective antigen domain-4. Hybridoma (Larchmt) 27:241–247Google Scholar
  4. Basaran P, Rodriguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28:153–172PubMedGoogle Scholar
  5. Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, Jha P, Campbell H, Walker CF, Cibulskis R, Eisele T, Liu L, Mathers C (2010) Global, regional and national causes of child mortality in 2008: a systematic analysis. Lancet 375:1969–1987PubMedGoogle Scholar
  6. Boivin EB, Lepage E, Matton DP, De Crescenzo G, Jolicoeur M (2010) Transient expression of antibodies in suspension plant cell suspension cultures is enhanced when co-transformed with the tomato bushy stunt virus p19 viral suppressor of gene silencing. Biotechnol Prog 26:1534–1543PubMedGoogle Scholar
  7. Bolhassani A, Safaiyan S, Rafati S (2011) Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10:3PubMedGoogle Scholar
  8. Branco MC, Sigano DM, Schneider JP (2011) Materials from peptide assembly: towards the treatment of cancer and transmittable disease. Curr Opin Chem Biol 15:427–434PubMedGoogle Scholar
  9. Bray BL (2003) Large-scale manufacture of peptide therapeutics. Nat Rev Drug 2:587–593Google Scholar
  10. Breckpot K, Escors D (2009) Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification. Endocr Metab Immune Disord Drug Targets 9:328–343PubMedGoogle Scholar
  11. Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27PubMedGoogle Scholar
  12. Campbell JD, Buckland KF, McMillan SJ, Kearley J, Oldfield WL, Stern LJ, Gronlund H, van Hage M, Reynolds CJ, Boyton RJ, Cobbold SP, Kay AB, Altmann DM, Lloyd CM, Larche M (2009) Peptide immunotherapy in allergic asthma generates IL-10-dependent immunological tolerance associated with linked epitope suppression. J Exp Med 206:1535–1547PubMedGoogle Scholar
  13. Castilho A, Strasser R, Stadlmann J, Grass J, Jez J, Gattinger P, Kunert R, Quendler H, Pabst M, Leonard R, Altmann F, Steinkellner H (2010) In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285:15923–15930PubMedGoogle Scholar
  14. Chua BY, Zeng WG, Lau YF, Jackson DC (2007) Comparison of lipopeptide-based immunocontraceptive vaccines containing different lipid groups. Vaccine 25:92–101PubMedGoogle Scholar
  15. Circelli P, Donini M, Villani ME, Benvenuto E, Marusic C (2010) Efficient Agrobacterium-based transient expression system for the production of biopharmaceuticals in plants. Bioeng Bugs 1:221–224PubMedGoogle Scholar
  16. Craik DJ, Simonsen S, Daly NL (2002) Thecyclotides: novel macrocyclic peptides as scaffolds in drug design. Curr Opin Discov Dev 5:251–260Google Scholar
  17. Croft NP, Purcell AW (2011) Peptidomimetics: modifying peptides in the pursuit of better vaccines. Expert Rev Vaccines 10:211–226PubMedGoogle Scholar
  18. Crotty S, Felgner P, Davies H, Glidewell J, Villareal L, Ahmed R (2003) Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol 171:4969–4973PubMedGoogle Scholar
  19. Dalsgaard K, Uttenthal A, Jones TD, Xu F, Merryweather A, Hamilton WD, Langeveld JP, Boshuizen RS, Kamstrup S, Lomonossoff GP, Porta C, Vela C, Casal JI, Meloen RH, Rodgers PB (1997) Plant-derived vaccine protects target animals against a viral disease. Nat Biotechnol 15:248–252PubMedGoogle Scholar
  20. Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679PubMedGoogle Scholar
  21. Davidson MH (2011) Cardiovascular effects of glucagonlike peptide-1 agonist. Am J Cardiol 108:33–41Google Scholar
  22. Ducat E, Deprez J, Gillet A, Noel A, Evrard B, Peulen O, Piel G (2011) Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles. Int J Pharm 25 (Epub ahead of print). doi:10.1016/j.ijpharm.2011.08.034
  23. Durham SR, Walker SM, Varga EM, Jacobson MR, O’Brien F, Noble W (1999) Long-term clinical efficacy of grass-pollen immunotherapy. N Engl J Med 341:468–475PubMedGoogle Scholar
  24. Ebner C, Siemann U, Bohle B, Willheim M, Wiedermann U, Schenk S, Klotz F, Ebner H, Kraft D, Scheiner O (1997) Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen. Clin Exp Allergy 27:1007–1015PubMedGoogle Scholar
  25. Edimayr J, Niespodziana K, Focke-Tejkl Linhart B, Valenta R (2011) Allergen-specific immunotherapy: towards combination vaccines for allergic and infectious diseases. Curr Top Microbiol Immunol 820:121–140Google Scholar
  26. Elgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Natl Rev Mol Cell Biol 4:181–191Google Scholar
  27. Fellrath JM, Kettner A, Dufour N, Frigerio C, Schneeberger D, Leimgruber A, Corradin G, Spertini F (2003) Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a phase I trial. J Allergy Clin Immunol 111:854–861PubMedGoogle Scholar
  28. Fischer R, Schillberg S, Hellwig S, Twyman RM, Drossard J (2011) GMP issues for plant-derived recombinant proteins. Biotechnol Adv. doi: 10.1016/j.biotechadv.2011.08.007
  29. Frolova OY, Petrunia IV, Komarova TV, Kosorukov VS, Sheval EV, Gleba YY, Dorokhov YL (2010) Trastuzumab-binding peptide display by Tobacco mosaic virus. Virology 407:7–13PubMedGoogle Scholar
  30. Giuliani A, Rinaldi AC (2011) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68:2255–2266PubMedGoogle Scholar
  31. Gomord V, Sourrouille C, Fitchette AC, Bardor M, Pagny S, Lerouge P, Faye L (2004) Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol J 2:83–100PubMedGoogle Scholar
  32. Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587PubMedGoogle Scholar
  33. Gupta RK, Rost BE, Relyveld E, Siber GR (1995) Adjuvant properties of aluminium and calcium compounds. In: Powell MF, Newman MJ (eds) Vaccine design: the subunit and adjuvant approach. Plenum Press, New York, pp 229–248Google Scholar
  34. Hashizume F, Hino S, Kakehashi M, Okajima T, Nadano D, Aoki N, Matsuda T (2008) Development and evaluation of transgenic rice seeds accumulating a type II-collagen tolerogenic peptide. Transgenic Res 17:1117–1129PubMedGoogle Scholar
  35. Hoft DF, Brusic V, Sakala IG (2011) Optimizing vaccine development. Cell Microbiol 13:934–942PubMedGoogle Scholar
  36. Huy NX, Yang MS, Kim TG (2011) Expression of a cholera toxin B subunit-neutralizing epitope of the porcine epidemic diarrhea virus fusion gene in transgenic lettuce (Lactuca sativa L.). Mol Biotechnol 48:201–209PubMedGoogle Scholar
  37. Jegerlehner A, Tissot A, Lechner F, Sebbel P, Erdmann I, Kundig T, Bachi T, Storni T, Jennings G, Pumpens P, Renner WA, Bachmann MF (2002) A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine 20:3104–3112PubMedGoogle Scholar
  38. Jones SM, Pons L, Roberts JL, Scurlock AM, Perry TT, Kulis M, Shreffler WG, Steele P, Henry KA, Adair M, Francis JM, Durham S, Vickery BP, Zhong X, Burks AW (2009) Clinical efficacy and immune regulation with peanut oral immunotherapy. J Allergy Clin Immunol 124:292–300PubMedGoogle Scholar
  39. Jutel M, Pichler WJ, Skrbic D, Urwyler A, Dahinden C, Muller UR (1995) Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-gamma secretion in specific allergen-stimulated T cell cultures. J Immunol 154:4187–4194PubMedGoogle Scholar
  40. Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL (2010) Transient expression systems for plant-derived bipharmaceuticals. Expert Rev Vaccines 9:859–876PubMedGoogle Scholar
  41. Lai H and Chen Q (2011) Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations. Plant Cell Rep. doi:10.1007/s00299-011-1196-6
  42. Larché M (2007) Peptide immunotherapy for allergic diseases. Allergy 62:325–331PubMedGoogle Scholar
  43. Larman HB, Zhao Z, Laserson U, Li MZ, Ciccia A, Gakidis MA, Church GM, Kesari S, Leproust EM, Solimini NL, Elledge SJ (2011) Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol 29:535–541PubMedGoogle Scholar
  44. Lee SB, Li B, Jin S, Daniell H (2011) Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol J 9:100–115PubMedGoogle Scholar
  45. Lentz EM, Segretin ME, Morgenfeld MM, Wirth SA, Dus Santos MJ, Mozgovoj MV, Wigdorovitz A, Bravo-Almonacid FF (2010) High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants. Planta 231:387–395PubMedGoogle Scholar
  46. Levine MM (2010) Immunogenicity and efficacy of oral vaccines in developing countries: lessons from a live cholera vaccine. BMC Biol 8:129PubMedGoogle Scholar
  47. Lico C, Capuano F, Renzone G, Donini M, Marusic C, Scaloni A, Benvenuto E, Baschieri S (2006) Peptide display on Potato virus X: molecular features of the coat protein-fused peptide affecting cell-to-cell and phloem movement of chimeric virus particles. J Gen Virol 87:3103–3112PubMedGoogle Scholar
  48. Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377PubMedGoogle Scholar
  49. Lico C, Mancini C, Italiani P, Betti C, Boraschi D, Benvenuto E, Baschieri S (2009) Plant-produced potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice. Vaccine 27:5069–5076PubMedGoogle Scholar
  50. Lien S, Lowman HB (2003) Therapeutic peptides. Trends Biotechnol 21:556–562PubMedGoogle Scholar
  51. Liénard D, Sourrouille C, Gomord V, Faye L (2007) Pharming and transgenic plants. Biotechnol Annu Rev 13:115–147PubMedGoogle Scholar
  52. Magis D, Schoenen J (2011) Treatment of migraine: update on new therapies. Curr Opin Neurol 24:203–210PubMedGoogle Scholar
  53. Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuc V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857PubMedGoogle Scholar
  54. Masuta C, Yamana T, Tacahashi Y, Uyeda I, Sato M, Ueda S, Matsumura T (2000) Development of clover yellow vein virus as an efficient, stable gene-expression system for legume species. Plant J 23:539–546PubMedGoogle Scholar
  55. Matoba N, Kajiura H, Cherni I, Doran JD, Bomsel M, Fujiyama K, Mor TS (2009) Biochemical and immunological characterization of the plant-derived candidate human immunodeficiency virus type 1 mucosal vaccine CTB-MPR. Plant Biotechnol J 7:129–145PubMedGoogle Scholar
  56. Meshcheryakova YA, Eldarov MA, Migunov AI, Stepanova LA, Repko IA, Kiselev CI, Lomonossoff GP, Skryabin KG (2009) Cowpea mosaic virus chimeric particles bearing the ectodomain of matrix protein 2 (M2E) of the influenza A virus: production and characterization. Appl Mol Biol 43:685–694Google Scholar
  57. Möbs C, Slotosch C, Löffler H, Jakob T, Hertl M, Pfützner W (2010) Birch pollen immunotherapy leads to differential induction of regulatory T cells and delayed helper T cell immune deviation. J Immunol 184:2194–2203PubMedGoogle Scholar
  58. Moldaver D, Larché M (2011) Immunotherapy with peptides. Allergy 66:784–791PubMedGoogle Scholar
  59. Mosekilde L, Torring O, Rejnmark L (2011) Emerging anabolic treatments in osteoporosis. Curr Drug Saf 6:62–74PubMedGoogle Scholar
  60. Moyle PM, Toth I (2008) Self-adjuvanting lipopeptide vaccines. Curr Med Chem 15:506–516PubMedGoogle Scholar
  61. Mukherjee P, Tinder TL, Basu GD, Pathangey LB, Chen L, Gendler SJ (2004) Therapeutic efficacy of MUC1-specific cytotoxic T lymphocytes and CD137 co-stimulation in a spontaneous breast cancer model. Breast Dis 20:53–63PubMedGoogle Scholar
  62. Muntz K (1998) Deposition of storage proteins. Plant Moll Biol 38:77–99Google Scholar
  63. Natilla A, Nemchinov LG (2008) Improvement of PVX/CMV CP expression tool for display of short foreign antigens. Protein Expr Purif 59:117–121PubMedGoogle Scholar
  64. Nishida H, Sato T, Ogura T, Nakaya H (2009) New aspects for the treatment of cardiac diseases based on the diversity of functional controls on cardiac muscles: mitochondrial ion channels and cardioprotection. J Pharmacol Sci 109:341–347PubMedGoogle Scholar
  65. Nouri-Aria KT, Wachholz PA, Francis JN, Jacobson MR, Walker SM, Wilcock LK, Staple SQ, Aalberse RC, Till SJ, Durham SR (2004) Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J Immunol 172:3252–3259PubMedGoogle Scholar
  66. Nuzzaci M, Piazzolla G, Vitti A, Lapelosa M, Tortorella C, Stella I, Natilla A, Antonaci S, Piazzolla P (2007) Cucumber mosaic virus as a presentation system for a double hepatitis C virus-derived epitope. Arch Virol 152:915–928PubMedGoogle Scholar
  67. Nuzzaci M, Bochicchio I, De Stradis A, Vitti A, Natilla A, Piazzolla P, Tamburro AM (2009) Structural and biological properties of Cucumber mosaic virus particles carrying hepatitis C virus-derived epitopes. J Virol Methods 155:118–121PubMedGoogle Scholar
  68. Nuzzaci M, Vitti A, Condelli V, Lanorte MT, Tortorella C, Boscia D, Piazzolla P, Piazzolla G (2010) In vitro stability of Cucumber mosaic virus nanoparticles carrying a Hepatitis C virus-derived epitope under simulated gastrointestinal conditions and in vivo efficacy of an edible vaccine. J Virol Methods 165:211–215PubMedGoogle Scholar
  69. Nykiforuk CL, Boothe JG, Murray EW, Keon RG, Goren HJ, Markley NA, Moloney MM (2006) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J 4:77–85PubMedGoogle Scholar
  70. Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222PubMedGoogle Scholar
  71. Ortigosa SM, Fernandez-San Millan A, Veramendi J (2010) Stable production of peptide antigens in transgenic tobacco chloroplasts by fusion to the p53 tetramerisation domain. Transgenic Res 19:703–709PubMedGoogle Scholar
  72. Oude Munnink TH, Nagengast WB, Brouwers AH, Schroder CP, Hospers GA, Lub-de Hooge MN, van der Wall E, van Diest PJ, de Vries EG (2009) Molecular imaging of breast cancer. Breast 3:S66–S73Google Scholar
  73. Pajno GB, Barberi S (2009) The history of sublingual immunotherapy. Int J Immunopathol Pharmacol 22:1–3PubMedGoogle Scholar
  74. Paul M, Ma JK (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58:58–67PubMedGoogle Scholar
  75. Paz De la Rosa G, Monroy-Garcia A, Mora-Garcia Mde L, Pena CG, Hernandez-Montes J, Weiss-Steider B, Gomez-Lim MA (2009) An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice. Virol J 6:2PubMedGoogle Scholar
  76. Phelps JP, Dang N, Rasochova L (2007) Inactivation and purification of cowpea mosaic virus-like particles displaying peptide antigens from Bacillus anthracis. J Virol Methods 141:146–153PubMedGoogle Scholar
  77. Pinkhasov J, Alvarez ML, Rigano MM, Piensook K, Larios D, Pabst M, Grass J, Mukherjee P, Gendler SJ, Walmsley AM, Mason HS (2011) Recombinant plant-expressed tumour-associated MUC1 peptide is immunogenic and capable of breaking tolerance in MUC1.Tg mice. Plant Biotechnol J. doi:10.1111/j.1467-7652.2011.00614.x
  78. Plotkin SA, Orenstein WA, Offit PA (2008) Vaccines, 5th edn. Saunders/Elsevier, PhiladelphiaGoogle Scholar
  79. Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 12:509–517PubMedGoogle Scholar
  80. Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6:404–414PubMedGoogle Scholar
  81. Qian B, Shen H, Liang W, Guo X, Zhang C, Wang Y, Li G, Wu A, Cao K, Zhang D (2008) Immunogenicity of recombinant hepatitis B virus surface antigen fused with preS1 epitopes expressed in rice seeds. Transgenic Res 17:621–631PubMedGoogle Scholar
  82. Reddish M, MacLean GD, Koganty RR, Kan-Mitchell J, Jones V, Mitchell MS, Longenecker BM (1998) Anti-MUC1 class I restricted CTLs in metastatic breast cancer patients immunized with a synthetic MUC1 peptide. Int J Cancer 76:817–823PubMedGoogle Scholar
  83. Reglodi D, Kiss P, Lubics A, Tamas A (2011) Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des 17:962–972PubMedGoogle Scholar
  84. Robinson WH, Steinman L (2011) Human peptidome display. Nat Biotech 6:500–501Google Scholar
  85. Rochlitz C, Figlin R, Squiban P, Salzberg M, Pless M, Herrmann R, Tartour E, Zhao Y, Bizouarne N, Baudin M, Acres B (2003) Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. J Gene Med 5:690–699PubMedGoogle Scholar
  86. Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8:620–637PubMedGoogle Scholar
  87. Schähs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 5:657–663PubMedGoogle Scholar
  88. Scholthof HB, Scholthof KB, Jackson AO (1996) Plant virus gene vectors for transient expression of foreign proteins in plants. Annu Rev Phytopathol 34:299–323PubMedGoogle Scholar
  89. Sethi AA, Amar M, Shamburek RD, Remaley AT (2007) ApolipoproteinA-I mimetic peptides: possible new agents for the treatment of atherosclerosis. Curr Opin Investig Drugs 8:201–212PubMedGoogle Scholar
  90. Sharma MK, Singh NK, Jani D, Sisodia R, Thungapathra M, Gautam JK, Meena LS, Singh Y, Ghosh A, Tyagi AK, Sharma AK (2008) Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). Plant Cell Rep 27:307–318PubMedGoogle Scholar
  91. Sheen S (1983) Biomass and chemical composition of tobacco plants under high density growth. Beitr Tabakforsch Int 12:35–42Google Scholar
  92. Shinmyo A, Kato K (2010) Molecular farming: production of drugs and vaccines in higher plants. J Antibiot 63:431–433PubMedGoogle Scholar
  93. Skwarczynski M, Toth I (2011) Peptide-based subunit nanovaccines. Curr Drug Deliv 8:282–289PubMedGoogle Scholar
  94. Soria-Guerra RE, Rosales-Mendoza S, Marquez-Mercado C, Lopez-Revilla R, Castillo-Collazo R, Alpuche-Solis AG (2007) Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene. Plant Cell Rep 26:961–968PubMedGoogle Scholar
  95. Soria-Guerra RE, Rosales-Mendoza S, Moreno-Fierros L, Lopez-Revilla R, Alpuche-Solis AG (2011) Oral immunogenicity of tomato-derived sDPT polypeptide containing Corynebacterium diphtheriae, Bordetella pertussis and Clostridium tetani exotoxin epitopes. Plant Cell Rep 30:417–424PubMedGoogle Scholar
  96. Sriraman R, Bardor M, Sack M, Vaquero C, Faye L, Fischer R, Finnern R, Lerouge P (2004) Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-α(1, 3)fucose residues. Plant Biotechnol J 2:279–287PubMedGoogle Scholar
  97. Stevenson CL (2009) Advances in peptide pharmaceuticals. Curr Pharm Biotechnol 10:122–137PubMedGoogle Scholar
  98. Strasser R, Altmann F, Mach L, Glossl J, Steinkellner H (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking β1, 2-linked xylose and core α1, 3-linked fucose. FEBS Lett 561:132–136PubMedGoogle Scholar
  99. Strasser R, Stadlmann J, Schähs M, Stiegler G, Quendler H, Mach L, Glössl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glycoengineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402PubMedGoogle Scholar
  100. Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous β1, 4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485PubMedGoogle Scholar
  101. Suzuki K, Kaminuma O, Yang L, Takai T, Mori A, Umezu-Goto M, Ohtomo T, Ohmachi Y, Noda Y, Hirose S, Okumura K, Ogawa H, Takada K, Hirasawa M, Hiroi T, Takaiwa F (2011) Prevention of allergic asthma by vaccination with transgenic rice seed expressing mite allergen: induction of allergen-specific oral tolerance without bystander suppression. Plant Biotechnol J. doi:10.1111/j.1467-7652.2011.00613.x
  102. Takagi H, Hiroi T, Yang L, Takamura K, Ishimitsu R, Kawauchi H, Takaiwa F (2008) Efficient induction of oral tolerance by fusing cholera toxin B subunit with allergen-specific T-cell epitopes accumulated in rice seed. Vaccine 26:6027–6030PubMedGoogle Scholar
  103. Takagi H, Hiroi T, Hirose S, Yang L, Takaiwa F (2010) Rice seed ER-derived protein body as an efficient delivery vehicle for oral tolerogenic peptides. Peptides 31:1421–1425Google Scholar
  104. Takaiwa F, Takagi H, Hirose S, Wakasa Y (2007) Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol J 5:84–92PubMedGoogle Scholar
  105. Takaiwa F, Hirose S, Takagi H, Yang L, Wakasa Y (2009) Deposition of a recombinant peptide in ER-derived protein bodies by retention with cysteine-rich prolamins in transgenic rice seed. Planta 229:1147–1158PubMedGoogle Scholar
  106. Tribbick G (2002) Multipin peptide libraries for antibody and receptor epitope screening and characterization. J Immunol Methods 267:27–35PubMedGoogle Scholar
  107. Triguero A, Cabrera G, Cremata JA, Yuen CT, Wheeler J, Ramírez NI (2005) Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N glycans. Plant Biotechnol J 3:449–457PubMedGoogle Scholar
  108. Van den Eynde BJ, van der Bruggen P (1997) T cell defined tumor antigens. Curr Opin Immunol 9:684–693PubMedGoogle Scholar
  109. Vitti A, Piazzolla G, Condelli V, Nuzzaci M, Lanorte MT, Boscia D, De Stradis A, Antonaci S, Piazzolla P, Tortorella C (2010) Cucumber mosaic virus as the expression system for a potential vaccine against Alzheimer’s disease. J Virol Methods 169:332–340PubMedGoogle Scholar
  110. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56PubMedGoogle Scholar
  111. Wakasa Y, Tamakoshi C, Ohno T, Hirose S, Goto T, Nagaoka S, Takaiwa F (2011a) The hypocholesterolemic activity of transgenic rice seed accumulating lactostatin, a bioactive peptide derived from bovine milk beta-lactoglobulin. J Agric Food Chem 59:3845–3850PubMedGoogle Scholar
  112. Wakasa Y, Zhao H, Hirose S, Yamauchi D, Yamada Y, Yang L, Ohinata K, Yoshikawa M, Takaiwa F (2011b) Antihypertensive activity of transgenic rice seed containing an 18-repeat novokinin peptide localized in the nucleolus of endosperm cells. Plant Biotechnol J 9:729–735PubMedGoogle Scholar
  113. Webb AI, Dunstone MA, Williamson NA, Price JD, de Kauwe A, Chen W, Oakley A, Perlmutter P, McCluskey J, Aguilar MI, Rossjohn J, Purcell AW (2005) T cell determinants incorporating beta-amino acid residues are protease resistant and remain immunogenic in vivo. J Immunol 175:3810–3818PubMedGoogle Scholar
  114. Wu D, Lee D, Sung YK (2011) Prospect of vasoactive intesstinal peptide therapy for COPD/PAH and asthma: a review. Respir Res 11:12–45Google Scholar
  115. Yang CD, Liao JT, Lai CY, Jong MH, Liang CM, Lin YL, Lin NS, Hsu YH, Liang SM (2007) Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. BMC Biotechnol 7:62PubMedGoogle Scholar
  116. Yusibov V, Mett V, Mett V, Davidson C, Muslychuk K, Gilliam S, Farese A, Macvittie T, Mann D (2005) Peptide-based candidate vaccine against respiratory syncytial virus. Vaccine 23:2261–2265PubMedGoogle Scholar
  117. Zhang Y, Li J, Pu H, Jin J, Zhang X, Chen M, Wang B, Han C, Yu J, Li D (2010) Development of Tobacco necrosis virus A as a vector for efficient and stable expression of FMDV VP1 peptides. Plant Biotechnol J 8:506–523PubMedGoogle Scholar
  118. Zhong W, Skwarczynski M, Toth I (2009) Lipid core peptide system for gene, drug and vaccine delivery. Aust J Chem 62:956–967Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Chiara Lico
    • 1
  • Luca Santi
    • 2
  • Richard M. Twyman
    • 3
  • Mario Pezzotti
    • 4
  • Linda Avesani
    • 4
  1. 1.Laboratorio di BiotecnologieUnità Tecnica BIORADRomeItaly
  2. 2.Department of Agriculture, Forests, Nature and Energy (D.A.F.N.E.)University of TusciaViterboItaly
  3. 3.Department of Biological SciencesUniversity of WarwickCoventryUK
  4. 4.Dipartimento di BiotecnologieUniversità degli Studi di VeronaVeronaItaly

Personalised recommendations