Plant Cell Reports

, Volume 31, Issue 3, pp 513–525 | Cite as

From miracle fruit to transgenic tomato: mass production of the taste-modifying protein miraculin in transgenic plants

  • Kyoko Hiwasa-Tanase
  • Tadayoshi Hirai
  • Kazuhisa Kato
  • Narendra Duhita
  • Hiroshi EzuraEmail author


The utility of plants as biofactories has progressed in recent years. Some recombinant plant-derived pharmaceutical products have already reached the marketplace. However, with the exception of drugs and vaccines, a strong effort has not yet been made to bring recombinant products to market, as cost-effectiveness is critically important for commercialization. Sweet-tasting proteins and taste-modifying proteins have a great deal of potential in industry as substitutes for sugars and as artificial sweeteners. The taste-modifying protein, miraculin, functions to change the perception of a sour taste to a sweet one. This taste-modifying function can potentially be used not only as a low-calorie sweetener but also as a new seasoning that could be the basis of a new dietary lifestyle. However, miraculin is far from inexpensive, and its potential as a marketable product has not yet been fully developed. For the last several years, biotechnological production of this taste-modifying protein has progressed extensively. In this review, the characteristics of miraculin and recent advances in its production using transgenic plants are summarized, focusing on such topics as the suitability of plant species as expression hosts, the cultivation method for transgenic plants, the method of purifying miraculin and future advances required to achieve industrial use.


Recombinant miraculin production Expression host Transgenic tomato Cultivation Purification Commercialization Safety assessment 



Cauliflower mosaic virus 35S promoter


Nopaline synthase terminator


Fresh weight


Heat shock protein 18.2 terminator from Arabidopsis thaliana


Photosynthetic photon flux



We are grateful to Inplanta Innovations Inc. for collaborations and the members of the Ezura laboratory for their helpful discussions. This study was supported by the project “Development of Fundamental Technologies for the Production of High-Value Materials Using Transgenic Plants” and by the Ministry of Economy, Trade, and Industry of Japan to H.E.


  1. Almeida DPF, Huber DJ (1999) Apoplastic pH and inorganic ion levels in tomato fruit: a potential means for regulation of cell wall metabolism during ripening. Physiol Plant 105:506–512. doi: 10.1034/j.1399-3054.1999.105316.x CrossRefGoogle Scholar
  2. Armah GE, Achel DG, Acquaah RA, Belew M (1999) Purification of miraculin glycoprotein using tandem hydrophobic interaction chromatography. United States Patent #5886155Google Scholar
  3. Bartoszewski G, Niedziela A, Szwacka M, Niemirowicz-Szczytt K (2003) Modification of tomato taste in transgenic plants carrying a thaumatin gene from Thaumatococcus daniellii Benth. Plant Breed 122:347–351. doi: 10.1046/j.1439-0523.2003.00864.x CrossRefGoogle Scholar
  4. Brouwer JN, Van Der Wei H, Francke A, Hemming G (1968) Miraculin, the sweetness inducing protein miracle fruit. Nature 220:373–374. doi: 10.1038/220373a0 PubMedCrossRefGoogle Scholar
  5. Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J. 1:1071–1079. doi: 10.1002/biot.200600145 PubMedCrossRefGoogle Scholar
  6. Deikman J, Fischer RL (1988) Interaction of a DNA binding factor with the 5′-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J 7:3315–3320PubMedGoogle Scholar
  7. Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435. doi: 10.1016/j.biotechadv.2010.01.005 PubMedCrossRefGoogle Scholar
  8. Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24:426–432. doi: 10.1016/j.tibtech.2006.06.012 PubMedCrossRefGoogle Scholar
  9. Duhita N, Hiwasa-Tanase K, Yoshida S, Ezura H (2009) Single-step purification of native miraculin using immobilized metal affinity chromatography. J Agric Food Chem 57:5148–5151. doi: 10.1021/jf9004065 PubMedCrossRefGoogle Scholar
  10. Duhita N, Hiwasa-Tanase K, Yoshida S, Ezura H (2011) A simple method for purifying undenatured miraculin from transgenic tomato fruits. Plant Biotechnol 28:281–286. doi: 10.5511/plantbiotechnology.11.0207a CrossRefGoogle Scholar
  11. Fluhr R, Kuhlemeier C, Nagy F, Chua NH (1986) Organ-specific and light-induced expression of plant genes. Science 232:1106–1112. doi: 10.1126/science.232.4754.1106 PubMedCrossRefGoogle Scholar
  12. Gilmartin GM (2005) Eukaryotic mRNA 30 processing: a common means to different ends. Genes Dev 19:2517–2521. doi: 10.1101/gad.1378105 PubMedCrossRefGoogle Scholar
  13. Giroux EL, Henkin RI (1974) Purification and some properties of miraculin, a glycoprotein from Synsepalum dulcificum which provokes sweetness and blocks sourness. J Agric Food Chem 22:594–601. doi: 10.1021/jf60194a033 CrossRefGoogle Scholar
  14. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353. doi: 10.1016/j.tibtech.2004.04.006 PubMedCrossRefGoogle Scholar
  15. Hirai T, Fukukawa G, Kakuta H, Fukuda N, Ezura H (2010a) Production of recombinant miraculin using transgenic tomato in a closed-cultivation system. J Agric Food Chem 58:6096–6101. doi: 10.1021/jf100414v PubMedCrossRefGoogle Scholar
  16. Hirai T, Sato M, Toyooka K, Sun HJ, Yano M, Ezura H (2010b) Miraculin, a taste-modifying protein is secreted into intercellular spaces in plant cells. J Plant Physiol 167:209–215. doi: 10.1016/j.jplph.2009.08.001 PubMedCrossRefGoogle Scholar
  17. Hirai T, Kim YW, Kato K, Hiwasa-Tanase K, Ezura H (2011a) Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. Transgenic Res. doi: 10.1007/s11248-011-9495-9 (in press)
  18. Hirai T, Kurokawa N, Duhita N, Hiwasa-Tanase K, Kato K, Kato K, Ezura H (2011b) The HSP terminator of Arabidopsis thaliana induces extremely high-level accumulation of miraculin protein in transgenic tomato. J Agric Food Chem 59:9942–9949. doi: 10.1021/jf202501e PubMedGoogle Scholar
  19. Hirai T, Shohael AM, Kim YW, Yano M, Ezura H (2011c) Ubiquitin promoter-terminator cassette promotes genetically stable expression of the taste-modifying protein miraculin in transgenic lettuce. Plant Cell Rep. doi: 10.1007/s00299-011-1131-x (in press)
  20. Hiwasa-Tanase K, Nyarubona M, Hirai T, Kato K, Ichikawa T, Ezura H (2011) High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator. Plant Cell Rep 30:113–124. doi: 10.1007/s00299-010-0949-y PubMedCrossRefGoogle Scholar
  21. Hobbs SLA, Kpodar P, DeLong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864. doi: 10.1007/BF00039425 PubMedCrossRefGoogle Scholar
  22. Igeta H, Tamura Y, Nakaya K, Nakamura Y, Kurihara Y (1991) Determination of disulfide array and subunit structure of taste-modifying protein, miraculin. Biochim Biophys Acta 1079:303–307. doi: 10.1016/0167-4838(91)90073-9 PubMedCrossRefGoogle Scholar
  23. Ingelbrecht ILW, Herman LMF, Dekeyser RA, Van Montagu MC, Depicker AG (1989) Different 30 end regions strongly influence the level of gene expression in plant cells. Plant Cell 1:671–680PubMedCrossRefGoogle Scholar
  24. Ito K, Asakura T, Morita Y, Nakajima K, Koizumi A, Shimizu-Ibuka A, Masuda K, Ishiguro M, Terada T, Maruyama J, Kitamoto K, Misaka T, Abe K (2007) Microbial production of sensory-active miraculin. Biochem Biophys Res Commun 360:407–411. doi: 10.1016/j.bbrc.2007.06.064 PubMedCrossRefGoogle Scholar
  25. Ito K, Sugawara T, Koizumi A, Nakajima K, Shimizu-Ibuka A, Shiroishi M, Asada H, Yurugi-Kobayashi T, Shimamura T, Asakura T, Masuda K, Ishiguro M, Misaka T, Iwata S, Kobayashi T, Abe K (2010) Bulky high-mannose-type N-glycan blocks the taste-modifying activity of miraculin. Biochim Biophys Acta 1800:986–992. doi: 10.1016/j.bbagen.2010.06.003 PubMedCrossRefGoogle Scholar
  26. Jorgensen RA, Cluste PD, English J, Que Q, Napoli C (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973. doi: 10.1007/BF00040715 PubMedCrossRefGoogle Scholar
  27. Kant R (2005) Sweet proteins—potential replacement for artificial low calorie sweeteners. Nutr J 4:5. doi: 10.1186/1475-2891-4-5 PubMedCrossRefGoogle Scholar
  28. Kato K, Yoshida R, Kikuzaki A, Hirai T, Kuroda H, Hiwasa-Tanase K, Takane K, Ezura H, Mizoguchi T (2010) Molecular breeding of tomato lines for mass production of miraculin in a plant factory. J Agric Food Chem 58:9505–9510. doi: 10.1021/jf101874b PubMedCrossRefGoogle Scholar
  29. Kato K, Maruyama S, Hirai T, Hiwasa-Tanase K, Mizoguchi T, Goto E, Ezura H (2011) A trial of production of the plant-derived high-value recombinant protein in a plant factory: photosynthetic photon fluxes affect the accumulation of recombinant miraculin in transgenic tomato fruits. Plant Signal Behav 8:1172–1179. doi: 10.4161/psb.6.8.16373 CrossRefGoogle Scholar
  30. Kaulen H, Schell J, Kreuzaler F (1986) Light-induced expression of the chimeric chalcone synthase-NPTII gene in tobacco cells. EMBO J 5:1–8PubMedGoogle Scholar
  31. Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 78:343–352. doi: 10.1266/ggs.78.343 PubMedCrossRefGoogle Scholar
  32. Kim YW, Hirai T, Kato K, Hiwasa-Tanase K, Ezura H (2010a) Gene dosage and genetic background affect miraculin accumulation in transgenic tomato fruits. Plant Biotechnol 27:333–338. doi: 10.5511/plantbiotechnology.27.333 CrossRefGoogle Scholar
  33. Kim YW, Kato K, Hirai T, Hiwasa-Tanase K, Ezura H (2010b) Spatial and developmental profiling of miraculin accumulation in transgenic tomato fruits expressing the miraculin gene constitutively. J Agric Food Chem 58:282–286. doi: 10.1021/jf9030663 PubMedCrossRefGoogle Scholar
  34. Koizumi A, Tsuchiya A, Nakajima K, Ito K, Terada T, Shimizu-Ibuka A, Briand L, Asakura T, Misaka T, Abe K (2011) Human sweet taste receptor mediates acid-induced sweetness of miraculin. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1016644108 (in press)
  35. Kurihara Y (1994) Thaumatin. In: Witty M, Higginbotham JD (eds) Sweet proteins in general. CRC Press, Boca Raton, pp 1–18Google Scholar
  36. Kurihara K, Beidler LM (1968) Taste-modifying protein from miracle fruit. Science 161:1241–1243. doi: 10.1126/science.161.3847.1241 PubMedCrossRefGoogle Scholar
  37. Kurihara K, Beidler LM (1969) Mechanism of the action of taste-modifying protein. Nature 222:1176–1178. doi: 10.1038/2221176a0 PubMedCrossRefGoogle Scholar
  38. Kurihara Y, Nirasawa S (1997) Structures and activities of sweetness-inducing substances (miraculin, curculin, strogin) and the heat-stable sweet protein, mabinlin. FFI J Jpn 174:67–74Google Scholar
  39. Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K, Ezura H, Saito K (2011) Covering the chemical diversity of genetically modified tomato using multi-platform metabolomics for an objective substantial equivalence assessment. PLoS ONE 6:e16989. doi: 10.1371/journal.pone.0016989 PubMedCrossRefGoogle Scholar
  40. Lamphear BJ, Barker DK, Brooks CA, Delaney DE, Lane JR, Beifuss K, Love R, Thompson K, Mayor J, Clough R, Harkey R, Poage M, Drees C, Horn ME, Streatfield SJ, Nikolov Z, Woodard SL, Hood EE, Jilka JM, Howard JA (2005) Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant Biotechnol J 3:103–114. doi: 10.1111/j.1467-7652.2004.00105.x PubMedCrossRefGoogle Scholar
  41. Lebedev VG, Taran SA, Shmatchenko VV, Dolgov SV (2002) Pear transformation with the gene for super-sweet protein thaumatin II. Acta Hortic 596:199–202Google Scholar
  42. Leelavathi S, Reddy VS (2003) Cloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed 11:49–58. doi: 10.1023/A:1022114427971 CrossRefGoogle Scholar
  43. Lin HH, Huang LF, Su HC, Jeng ST (2009) Effect of the multiple polyadenylation signal AAUAAA on mRNA 3′-end formation and gene expression. Planta 230:699–712. doi: 10.1007/s00425-009-0977-4 PubMedCrossRefGoogle Scholar
  44. Lincoln JE, Fischer RL (1988a) Diverse mechanisms for the regulation of ethylene-inducible gene expression. Mol Gen Genet 212:71–75. doi: 10.1007/BF00322446 PubMedCrossRefGoogle Scholar
  45. Lincoln JE, Fischer RL (1988b) Regulation of gene expression by ethylene in wild-type and rin tomato (Lycopersicon esculentum) fruit. Plant Physiol 88:370–374PubMedCrossRefGoogle Scholar
  46. Liu Q, Xue Q (2005) Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J Genet 84:55–62. doi: 10.1007/BF02715890 PubMedCrossRefGoogle Scholar
  47. Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 121:20–28. doi: 10.1016/S0167-7799(02)00007-0 CrossRefGoogle Scholar
  48. Masuda T, Kitabatake N (2006) Developments in biotechnological production of sweet proteins. J Biosci Bioeng 102:375–389. doi: 10.1263/jbb.102.375 PubMedCrossRefGoogle Scholar
  49. Masuda Y, Nirasawa S, Nakaya K, Kurihara Y (1995) Cloning and sequencing of a cDNA encoding a taste-modifying protein, miraculin. Gene 161:175–177. doi: 10.1016/0378-1119(95)00198-F PubMedCrossRefGoogle Scholar
  50. Matsui T, Takita E, Sato T, Aizawa M, Ki M, Kadoyama Y, Hirano K, Kinjo S, Asao H, Kawamoto K, Kariya H, Makino S, Hamabata T, Sawada K, Kato K (2011) Production of double repeated B subunit of Shiga toxin 2e at high levels in transgenic lettuce plants as vaccine material for porcine edema disease. Transgenic Res 20:735–748. doi: 10.1007/s11248-010-9455-9 PubMedCrossRefGoogle Scholar
  51. Matsuyama T, Satoh M, Nakata R, Aoyama T, Inoue H (2009) Functional expression of miraculin, a taste-modifying protein in Escherichia coli. J Biochem 145:445–450. doi: 10.1093/jb/mvn184 PubMedCrossRefGoogle Scholar
  52. Meyer P (1996) Repeat-induced gene silencing: common mechanisms in plants and fungi. Biol Chem Hoppe Seyler 377:87–95PubMedCrossRefGoogle Scholar
  53. Meyers B, Zaltsman A, Lacroix B, Kozlovsky SV, Krichevsky A (2010) Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Biotechnol Adv 28:747–756. doi: 10.1016/j.biotechadv.2010.05.022 PubMedCrossRefGoogle Scholar
  54. Morimoto T, Torii T, Hashimoto Y (1995) Optimal control of physiological processes of plants in a green plant factory. Control Eng Pract 3:505–511. doi: 10.1016/0967-0661(95)00022-M CrossRefGoogle Scholar
  55. Murray EE, Lotzer J, Eberle M (1989) Codon usage in plant genes. Nucleic Acids Res 17:477–498PubMedCrossRefGoogle Scholar
  56. Nagaya S, Kawamura K, Shinmyo A, Kato K (2010) The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol 51:328–532. doi: 10.1093/pcp/pcp188 PubMedCrossRefGoogle Scholar
  57. Paladino A, Costantini S, Colonna G, Facchiano AM (2008) Molecular modeling of miraculin: structural analysis and functional hypothesis. Biochem Biophys Res Commun 367:26–32. doi: 10.1016/j.bbrc.2007.12.102 PubMedCrossRefGoogle Scholar
  58. Paladino A, Colonna G, Facchiano AM, Constantini S (2010) Functional hypothesis on miraculin’ sweetness by a molecular dynamics approach. Biochem Biophys Res Commun 396:726–730. doi: 10.1016/j.bbrc.2010.05.002 PubMedCrossRefGoogle Scholar
  59. Peñarrubia L, Kim R, Giovannoni J, Kim SH, Fischer RL (1992) Production of the sweet protein monellin in transgenic plants. Nat Biotechnol 10:561–564. doi: 10.1038/nbt0592-561 CrossRefGoogle Scholar
  60. Peng RH, Yao QH, Xiong AS, Cheng ZM, Li Y (2006) Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Res 25:124–132. doi: 10.1007/s00299-005-0036-y CrossRefGoogle Scholar
  61. Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88:3324–3328PubMedCrossRefGoogle Scholar
  62. Proudfoot N (2004) New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr Opin Cell Biol 16:272–278. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  63. Rouwendal GJ, Mendes O, Wolbert EJH, Boer AD (1997) Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol 33:989–999. doi: 10.1023/A:1005740823703 PubMedCrossRefGoogle Scholar
  64. Schestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene from demonstrate enhanced resistance to Botrytis cinerea. Sci Hortic 106:177–189. doi: 10.1016/j.scienta.2005.03.016 CrossRefGoogle Scholar
  65. Shimizu-Ibuka A, Morita Y, Terada T, Asakura T, Nakajima K, Iwata S, Misaka T, Sorimachi H, Arai S, Abe K (2006) Crystal structure of neoculin: insights into its sweetness and taste-modifying activity. J Mol Biol 359:148–158. doi: 10.1016/j.jmb.2006.03.030 PubMedCrossRefGoogle Scholar
  66. Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338. doi: 10.1038/73796 PubMedCrossRefGoogle Scholar
  67. Stougaard J, Sandal NN, Gron A, Kuhle A, Marcker KA (1987) 5′ Analysis of the soybean leghaemoglobin lbc3 gene: regulatory elements required for promoter activity and organ specificity. EMBO J 6:3565–3569PubMedGoogle Scholar
  68. Sugaya T, Yano M, Sun HJ, Hirai T, Ezura H (2008) Transgenic strawberry expressing a taste-modifying protein, miraculin. Plant Biotechnol 25:329–333. doi: 10.5511/plantbiotechnology.25.329 CrossRefGoogle Scholar
  69. Sun HJ, Cui ML, Ma B, Ezura H (2006a) Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Lett 580:620–626. doi: 10.1016/j.febslet.2005.12.080 PubMedCrossRefGoogle Scholar
  70. Sun HJ, Uchii S, Watanabe S, Ezura H (2006b) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431. doi: 10.1093/pcp/pci251 PubMedCrossRefGoogle Scholar
  71. Sun HJ, Kataoka H, Yano M, Ezura H (2007) Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotech J 5:768–777. doi: 10.1111/j.1467-7652.2007.00283.x CrossRefGoogle Scholar
  72. Szwacka M, Kryzymowska M, Osuch A, Kowalczyk ME, Malepszy S (2002) Variable properties of transgenic cucumber plants containing the thaumatin II gene from Thaumatococcus daniellii. Acta Physiol Plant 24:173–185. doi: 10.1007/s11738-002-0009-5 CrossRefGoogle Scholar
  73. Takagi K, Teshima R, Okunuki H, Sawada J (2003) Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion. Biol Pharm Bull 26:969–973PubMedCrossRefGoogle Scholar
  74. Theerasilp S, Kurihara Y (1988) Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit. J Biol Chem 263:11536–11539PubMedGoogle Scholar
  75. Theerasilp S, Hitotsuya H, Nakajo S, Nakaya K, Nakamura Y, Kurihara Y (1989) Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin. J Biol Chem 264:6655–6659PubMedGoogle Scholar
  76. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578. doi: 10.1016/j.tibtech.2003.10.002 PubMedCrossRefGoogle Scholar
  77. Williamson JD, Hirsch-Wyncott ME, Larkins BA, Gelvin SB (1989) Differential accumulation of a transcript driven by the CaMV 35S promoter in transgenic tobacco. Plant Physiol 90:1570–1576. doi: 10.1104/pp90.4.1570 PubMedCrossRefGoogle Scholar
  78. Witty M (1990) Preprothaumatin II is processed to biological activity in Solanum tuberosum. Biotechnol Lett 12:131–136. doi: 10.1007/BF01022429 CrossRefGoogle Scholar
  79. Xue GP, Patel M, Johnson JS, Smyth DJ, Vickers CE (2003) Selectable marker-free transgenic barley producing a high level of cellulose (1,4-β-glucanase) in developing grains. Plant Cell Rep 21:1088–1094. doi: 10.1007/s00299-003-0627-4 PubMedCrossRefGoogle Scholar
  80. Yano M, Hirai T, Kato K, Hiwasa-Tanase K, Fukuda N, Ezura H (2010) Tomato is a suitable material for producing recombinant miraculin protein in genetically stable manner. Plant Sci 178:469–473. doi: 10.1016/j.plantsci.2010.02.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kyoko Hiwasa-Tanase
    • 1
  • Tadayoshi Hirai
    • 1
  • Kazuhisa Kato
    • 1
    • 2
  • Narendra Duhita
    • 1
  • Hiroshi Ezura
    • 1
    Email author
  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Faculty of AgricultureIwate UniversityMoriokaJapan

Personalised recommendations