Plant Cell Reports

, Volume 31, Issue 1, pp 111–119 | Cite as

Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L.

  • A. Gatica-Arias
  • M. A. Farag
  • M. Stanke
  • J. Matoušek
  • L. Wessjohann
  • G. WeberEmail author
Original Paper


Hop is an important source of secondary metabolites, such as flavonoids. Some of these are pharmacologically active. Nevertheless, the concentration of some classes as flavonoids in wild-type plants is rather low. To enhance the production in hop, it would be interesting to modify the regulation of genes in the flavonoid biosynthetic pathway. For this purpose, the regulatory factor PAP1/AtMYB75 from Arabidopsis thaliana L. was introduced into hop plants cv. Tettnanger by Agrobacterium-mediated genetic transformation. Twenty kanamycin-resistant transgenic plants were obtained. It was shown that PAP1/AtMYB75 was stably incorporated and expressed in the hop genome. In comparison to the wild-type plants, the color of female flowers and cones of transgenic plants was reddish to pink. Chemical analysis revealed higher levels of anthocyanins, rutin, isoquercitin, kaempferol-glucoside, kaempferol-glucoside-malonate, desmethylxanthohumol, xanthohumol, α-acids and β-acids in transgenic plants compared to wild-type plants.


Hop Plant transcriptional factors Genetic transformation Secondary metabolites Flavonol glycosides Anthocyanins 



Cauliflower mosaic virus


Electrospray ionization


High-performance liquid chromatography


Indole-3-acetic acid


Liquid chromatography–mass spectrometry


Liquid chromatography–electrospray ionization


Murashige and Skoog medium


Tandem mass spectrometry


Neomycin phosphotransferase gene


Production of anthocyanin pigment 1


Photodiode array detection


1-Phenyl-3-(1,2,3-thiadiazol-5-yl) urea


Wild type



The excellent technical assistance of Ute Born, Kathatrina Alheit and Carolin Aldinger is gratefully acknowledged, as well as the support of the Ministry of Nutrition and Agriculture of the State of Baden-Württemberg (Stuttgart, Germany), Hop Growers Cooperative (Tettnang, Germany) and the Czech Science Foundation (project GACR 521/08/0740). Dr. Mohamed A. Farag thanks the Alexander von Humboldt Foundation for supporting the research at the Leibniz Institute of Plant Biochemistry. The scholarship from the German Academic Exchange Service (DAAD) and partial support from the University of Costa Rica are gratefully acknowledged by A. Gatica.


  1. Allan A, Hellens R, Laing W (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102PubMedCrossRefGoogle Scholar
  2. Beatson RA, Ansell KA, Graham LT (2003) Breeding, development, and characteristics of the hop (Humulus lupulus) cultivar ‘Nelson Sauvin’ New Zealand. J Crop Hortic Sci 31:303–309CrossRefGoogle Scholar
  3. Borevitz J, Xia Y, Blount J, Dixon R, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394PubMedCrossRefGoogle Scholar
  4. Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotech 15:148–154PubMedCrossRefGoogle Scholar
  5. Chadwick L, Pauli G, Farnsworth N (2006) The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine 13:119–131PubMedCrossRefGoogle Scholar
  6. Chen W, Lin J (2004) Mechanisms of cancer chemoprevention by hop bitter acids (beer aroma) through induction of apoptosis mediated by Fas and caspase cascades. J Agric Food Chem 52:55–64PubMedCrossRefGoogle Scholar
  7. De Keukeleire J, Ooms G, Heyerick A, Roldan-Ruiz I, Bockstaele Van, De Keukeleire D (2003) Formation and accumulation of α-acids, β-acids, desmethylxanthohumol xanthohumol during flowering of hops (Humulus lupulus L.). J Agric Food Chem 51:4436–4441PubMedCrossRefGoogle Scholar
  8. Fleischer R, Horlemann C, Schwekendiek A, Kling C, Weber G (2004) AFLP fingerprinting in hop: analysis of the genetic variability of the Tettnang variety. Genet Res Crop Evol 51:211–220CrossRefGoogle Scholar
  9. Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  10. Gerhäuser C (2005) Beer constituents as potential cancer chemopreventive agents. Eur J Cancer 41:1941–1954PubMedCrossRefGoogle Scholar
  11. Horlemann C, Schwekendiek A, Hohnle M, Weber G (2003) Regeneration and Agrobacterium-mediated transformation of hop (Humulus lupulus L.). Plant Cell Rep 22:210–217PubMedCrossRefGoogle Scholar
  12. Kavalier AR, Litt A, Ma Ch, Pitra NJ, Coles MC, Kennelly EJ, Matthews PD (2011) Phytochemical and morphological characterization of hop (Humulus lupulus L.) cones over five developmental stages using high performance liquid chromatography coupled to time-of-flight mass spectrometry, ultrahigh performance liquid chromatography photodiode array detection, and light microscopy techniques. J Agric Food Chem 59:4783–4793PubMedCrossRefGoogle Scholar
  13. Lamy V, Roussi S, Chaabi M, Gossé F, Schall N, Lobstein A, Raul F (2007) Chemopreventive effects of lupulone, a hop β-acid, on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 28:1575–1581PubMedCrossRefGoogle Scholar
  14. Lessard P, Kulaveerasingam H, York G, Strong A, Sinskey A (2002) Manipulating gene expression for the metabolic engineering of plants. Metab Eng 4:67–79PubMedCrossRefGoogle Scholar
  15. Li X, Gao MJ, Pan HY, Cui DJ, Gruber M (2010) Purple canola: Arabidopsis PAP1 increases antioxidants and phenolic in Brassica napus leaves. J Agric Food Chem 58:1639–1645PubMedCrossRefGoogle Scholar
  16. MacKenzie D, McLean M, Mukerji S, Green M (1997) Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcription polymerase chain reaction. Plant Dis 81:222–226CrossRefGoogle Scholar
  17. Matoušek J, Vrba L, Škopek J, Orctová L, Pešina K, Heyerick A, Baulcombe D, De Keukeleire D (2006) Sequence analysis of a “true” chalcone synthase (chs_H1) oligofamily from hop (Humulus lupulus L.) and PAP1 activation of chs_H1 in heterologous systems. J Agric Food Chem 54:7606–7615PubMedCrossRefGoogle Scholar
  18. Matoušek J, Kocábek T, Patzak J, Škopek J, Maloukh L, Heyerick A, Fussy Z, Roldán-Ruiz I, Keukeleire D (2007) Hlmyb3, a putative regulatory factor in hop (Humulus lupulus L.), shows a diverse biological effect in heterologous transgenotes. J Agric Food Chem 55:7767–7776PubMedCrossRefGoogle Scholar
  19. Matsui K, Tanaka H, Ohme-Takagi M (2004) Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor. Plant Biotech J 2:487–493CrossRefGoogle Scholar
  20. Milligan S, Kalita J, Pocock V, Heyerick A, De Cooman L, Rong H (2002) Oestrogenic activity of the hop phyto-oestrogen, 8-prenylnaringenin. Reproduction 123:235–242PubMedCrossRefGoogle Scholar
  21. Miranda C, Yang Y, Henderson M, Stevens J, Santana-Rios G, Deinzer M (2000) Prenylflavonoids from hops inhibit the metabolic activation of the carcinogenic heterocyclic amine 2-amino-3-methylimidazol [4, 5-f] quinoline, mediated by cDNA-expressed human CYP1A2. Drug Metab Dispos 28:1297–1302PubMedGoogle Scholar
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  23. Nesvadba V, Krofta K, Poloncikova Z (2011) New knowledge in Czech hop breeding. In: Seigner E (ed) Proceedings of the Scientific Commission International Hop Grower’s Convention. Scientific Commission Meeting. Lublin, Poland. Accessed 31 July 2011
  24. Pšenáková I, Gašpárková L, Faragó J (2009) Polyphenol and flavonoid contents of hop callus and cell suspension cultures. In: Seigner E (ed) Proceedings of the Scientific Commission International Hop Grower’s Convention. Scientific Commission Meeting. León, Spain.,%20Spanien,%20Juni%202009. Accessed 31 July 2011
  25. Rowan D, Cao M, Lin-Wang K, Cooney J, Jensen D, Austin P, Hunt M, Norling C, Hellens P, Schaffer R, Allan A (2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol 182:102–115PubMedCrossRefGoogle Scholar
  26. Sato F, Inui T, Takemura T (2007) Metabolic engineering in isoquinoline alkaloid biosynthesis. Curr Pharm Biotech 8:211–218CrossRefGoogle Scholar
  27. Schijlen E, Ric de Vos C, van Tunen A, Bovy A (2004) Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65:2631–2648PubMedCrossRefGoogle Scholar
  28. Stevens JF, Ivancic M, Hsu VL, Deinzer ML (1997) Prenylflavonoids from Humulus lupulus. Phytochemistry 44:1575–1585CrossRefGoogle Scholar
  29. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456PubMedCrossRefGoogle Scholar
  30. Tagashira M, Watanabe M, Uemitsu N (1995) Antioxidative activity of hop bitter acids and their analogues. Biosci Biotech Biochem 59:740–742CrossRefGoogle Scholar
  31. Tian L, Dixon R (2006) Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224:496–507PubMedCrossRefGoogle Scholar
  32. Tohge T, Nishiyama Y, Hirai M, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe D, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235PubMedCrossRefGoogle Scholar
  33. Ürgeová E, Polívka L, Faragó J, Vaverková S (2011) Study of the production of secondary metabolites in shoot and callus cultures and field grown plants of Hop. In: Seigner E (ed) Proceedings of the Scientific Commission International Hop Grower’s Convention Scientific Commission Meeting. Lublin, Poland. Accessed 31 July 2011
  34. Verzele M, De Keukeleire D (1991) Chemistry and analysis of hop and beer bitter acids. Elsevier, Amsterdam p 417Google Scholar
  35. Xie D-Y, Sharma S, Wright E, Wang Z-Y, Dixon R (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907PubMedCrossRefGoogle Scholar
  36. Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene–metabolite in Arabidopsis. Plant Cell 20:2160–2176PubMedCrossRefGoogle Scholar
  37. Zhou L, Zeng N, Shi M, Xie D (2008) Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis. Planta 229:37–51PubMedCrossRefGoogle Scholar
  38. Zuluaga L, Gonzali S, Loreti E, Pucciariello C, Degl’innocenti E, Guidi L, Alpi A, Perata P (2008) Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct Plant Biol 35:606–618CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Gatica-Arias
    • 1
  • M. A. Farag
    • 3
    • 4
  • M. Stanke
    • 1
  • J. Matoušek
    • 2
  • L. Wessjohann
    • 3
  • G. Weber
    • 1
    Email author
  1. 1.Plant Breeding and Biotechnology, Institute for Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
  2. 2.BC ASCR, v.v.i. IPMBČeské BudějoviceCzech Republic
  3. 3.Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryHalle (Saale)Germany
  4. 4.Pharmacognosy DepartmentCollege of Pharmacy, Cairo UniversityCairoEgypt

Personalised recommendations