Plant Cell Reports

, Volume 31, Issue 1, pp 67–79 | Cite as

Molecular characterization of a rice metal tolerance protein, OsMTP1

  • Lianyu Yuan
  • Songguang Yang
  • Baoxiu Liu
  • Mei Zhang
  • Keqiang Wu
Original Paper


Rice (Oryza sativa L. ‘Nipponbare’) cDNA subtractive suppression hybridization (SSH) libraries constructed using cadmium (Cd)-treated seedling roots were screened to isolate Cd-responsive genes. A cDNA clone, encoding the rice homolog of Metal Tolerance Protein (OsMTP1), was induced by Cd treatment. Plant MTPs belong to cation diffusion facilitator (CDF) protein family, which are widespread in bacteria, fungi, plants, and animals. OsMTP1 heterologous expression in yeast mutants showed that OsMTP1 was able to complement the mutant strains’ hypersensitivity to Ni, Cd, and Zn, but not other metals including Co and Mn. OsMTP1 expression increased tolerance to Zn, Cd, and Ni in wild-type yeast BY4741 during the exponential growth phase. OsMTP1 fused to green fluorescent protein was localized in onion epidermal cell plasma membranes, consistent with an OsMTP1 function in heavy metal transporting. OsMTP1 dsRNAi mediated by transgenic assay in rice seedlings resulted in heavy metal sensitivity and changed the heavy metal accumulation in different organs of mature rice under low-concentration heavy metal stress. Taken together, our results show that OsMTP1 is a bivalent cation transporter localized in the cell membrane, which is necessary for efficient translocation of Zn, Cd and other heavy metals, and maintain ion homeostasis in plant.


Metal tolerance protein Heavy metal Rice 



Metal tolerance protein


Cation diffusion facilitator


Natural resistance-associated macrophage protein


Zn-regulated transporter-/Fe-regulated transporter-like protein


Transmembrane domain


Zinc transporter of Arabidopsis thaliana


Atomic absorption spectrometer


Double-stranded RNA interference

SD medium

Synthetic defined medium


Reverse transcription PCR




Open reading frame


Enhanced green fluorescent protein


Subtractive suppression hybridization


In situ hybridization

Supplementary material

299_2011_1140_MOESM1_ESM.doc (60 kb)
Supplement data 1 (DOC 60 kb)
299_2011_1140_MOESM2_ESM.doc (27 kb)
Supplement data 2 (DOC 27 kb)
299_2011_1140_MOESM3_ESM.doc (34 kb)
Supplement data 3 (DOC 34 kb)


  1. Arrivault S, Senger T, Krämer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46(5):861–879PubMedCrossRefGoogle Scholar
  2. Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L, Zhao J, Sun M, He R, He G (2007) Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell 19(3):847–861PubMedCrossRefGoogle Scholar
  3. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486PubMedCrossRefGoogle Scholar
  4. Conklin DS, McMaster JA, Culbertson MR, Kung C (1992) COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol 12:3678–3688PubMedGoogle Scholar
  5. Damien B, Annegret K, Francis DaleS, Michel C (2003) Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell 15:2911–2928CrossRefGoogle Scholar
  6. Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15(5):1131–1142PubMedCrossRefGoogle Scholar
  7. Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51(2):198–210PubMedCrossRefGoogle Scholar
  8. Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39(3):425–439PubMedCrossRefGoogle Scholar
  9. Eren E, Argüello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136(3):3712–3723PubMedCrossRefGoogle Scholar
  10. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34PubMedCrossRefGoogle Scholar
  11. Goyer RA (1997) Toxic and essential metal interactions. Annu Rev Nutr 17:37–50PubMedCrossRefGoogle Scholar
  12. Gustin JL, Zanis MJ, Salt DE (2011) Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 11:76PubMedCrossRefGoogle Scholar
  13. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613PubMedCrossRefGoogle Scholar
  14. Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32(6):215–226PubMedCrossRefGoogle Scholar
  15. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  16. Hua W, Zhang L, Liang S, Jones RL, Lu YT (2004) A tobacco calcium/calmodulin-binding protein kinase functions as a negative regulator of flowering. J Biol Chem 279:31483–31494PubMedCrossRefGoogle Scholar
  17. Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39(2):237–251PubMedCrossRefGoogle Scholar
  18. Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758PubMedCrossRefGoogle Scholar
  19. Li L, Kaplan J (1998) Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273:22181–22187PubMedCrossRefGoogle Scholar
  20. Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc Natl Acad Sci USA 94:42–47PubMedCrossRefGoogle Scholar
  21. Lyons TJ, Gasch AP, Gaither LA, Botstein D, Brown PO, Eide DJ (2000) Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. Proc Natl Acad Sci USA 97:7957–7962PubMedCrossRefGoogle Scholar
  22. Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126(4):1646–1667PubMedCrossRefGoogle Scholar
  23. Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 107:1471–2164Google Scholar
  24. Supek F, Supekova L, Nelson H, Nelson N (1996) A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci USA 93:5105–5110PubMedCrossRefGoogle Scholar
  25. Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ (1994) A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 269:22853–22857PubMedGoogle Scholar
  26. Ton VK, Mandal D, Vahadji C, Rao R (2002) Functional expression in yeast of the human secretory pathway Ca2+/Mn2+ATPase defective in Hailey–Hailey disease. J Biol Chem 277:6422–6427PubMedCrossRefGoogle Scholar
  27. Van-Der-Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055PubMedCrossRefGoogle Scholar
  28. Wang Z, Chen CB, Xu YY, Jiang RX, Han Y, Xu ZH, Chong K (2004) A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Mol Biol Rep 22(4):409–417CrossRefGoogle Scholar
  29. Williams LE, Mills RF (2005) P1B-ATPases-an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502PubMedCrossRefGoogle Scholar
  30. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126PubMedCrossRefGoogle Scholar
  31. Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice, 3rd edn. The International Rice Research Institute, Manila, The PhilippinesGoogle Scholar
  32. Zhang M, Liang SP, Lu YT (2005) Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase. Biochim Biophys Acta 1729:174–185PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lianyu Yuan
    • 1
    • 2
  • Songguang Yang
    • 1
  • Baoxiu Liu
    • 1
    • 2
  • Mei Zhang
    • 1
  • Keqiang Wu
    • 1
  1. 1.Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations