Plant Cell Reports

, Volume 30, Issue 8, pp 1367–1382

Two decades of plant-based candidate vaccines: a review of the chimeric protein approaches

  • Ruth Elena Soria-Guerra
  • Leticia Moreno-Fierros
  • Sergio Rosales-Mendoza
Review

Abstract

Genetic engineering revolutionized the concept of traditional vaccines since subunit vaccines became reality. Additionally, over the past two decades plant-derived antigens have been studied as potential vaccines with several advantages, including low cost and convenient administration. More specifically, genetic fusions allowed the expression of fusion proteins carrying two or more components with the aim to elicit immune responses against different targets, including antigens from distinct pathogens or strains. This review aims to provide an update in the field of the production of plant-based vaccine, focusing on those approaches based on the production of chimeric proteins comprising antigens from human pathogens, emphasizing the case of cholera toxin/E. coli enterotoxin fusions, chimeric viruses like particles approaches as well as the possible use of adjuvant-producing plants as expression hosts. Challenges for the near future in this field are also discussed.

Keywords

Plant-based vaccine Fusion protein Broad immune protection Molecular farming Oral immunization 

References

  1. Alvarez ML, Cardineau GA (2010) Prevention of bubonic and pneumonic plague using plant derived vaccines. Biotechnol Adv 28:184–196PubMedCrossRefGoogle Scholar
  2. Alvarez ML, Pinyerd HL, Crisantes JD, Rigano M, Pinkhasov J, Walmsley AM, Mason HS, Cardineau GA (2006) Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine 24:2477–2490PubMedCrossRefGoogle Scholar
  3. Anderson GW, Leary SE, Williamson DE, Titball RW, Welkos SL, Worsham PL, Friedlander AM (1996) Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis. Infect Immun 64:4580–4585PubMedGoogle Scholar
  4. Andrews GP, Heath DG, Anderson GW, Welkos SL, Friedlander AM (1996) Fraction 1 capsular antigen purification from Yersinia pestis CO92 and from an E. coli recombinant strain and efficacy against lethal plague challenge. Infect Immun 64:2180–2187PubMedGoogle Scholar
  5. Andrianov V, Brodzik R, Spitsin S, Bandurska K, McManus H, Koprowski H, Golovkin M (2010) Production of recombinant anthrax toxin receptor (ATR/CMG2) fused with human Fc in planta. Prot Expr Pur 70:158–162CrossRefGoogle Scholar
  6. Arlen PA, Singleton M, Adamovicz JJ, Ding Y, Davoodi-Semiromi A, Daniell H (2008) Effective plague vaccination via oral delivery of plant cells expressing F1–Vs in chloroplasts. Infect Immun 76:3640–3650PubMedCrossRefGoogle Scholar
  7. Ashkenazi A, Chamow S (1997) Immunoadhesins as research tools and therapeutic agents. Curr Opin Immunol 9:195–200PubMedCrossRefGoogle Scholar
  8. Bandurska K, Brodzik R, Spitsin S, Kohl T, Portocarrero C, Smirnov Y, Pogrebnyak N, Sirko A, Koprowski H, Golovkin M (2008) Plant- produced hepatitis B core protein chimera carrying anthrax protective antigen domain-4. Hybridoma 27:241–247PubMedCrossRefGoogle Scholar
  9. Berzofsky JA, Ahlers JD, Belyakov IM (2001) Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 1:209–219PubMedCrossRefGoogle Scholar
  10. Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606PubMedCrossRefGoogle Scholar
  11. Cardenas L, Clements JD (1993) Development of mucosal protection against the heat stable enterotoxin (ST) of Escherichia coli by oral immunization with a genetic fusion delivered by a bacterial vector. Infect Immun 61:4629–4636Google Scholar
  12. Cardi T, Lenzi P, Maliga P (2010) Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 9:893–911PubMedCrossRefGoogle Scholar
  13. CDC (1992) Pertussis vaccination: acellular pertussis vaccine for the fourth and fifth doses of the DTP series update to supplementary ACIP statement. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 41 (No. RR-15):1–5Google Scholar
  14. Chichester JA, Musiychuk K, Farrance CE, Mett V, Lyons J, Mett V, Yusibov V (2009) A single component two-valent LcrV-F1 vaccine protects non-human primates against pneumonic plague. Vaccine 27:3471–3474PubMedCrossRefGoogle Scholar
  15. Choi NW, Estes MK, Langridge WH (2005) Synthesis and assembly of a cholera toxin B subunit-rotavirus VP7 fusion protein in transgenic potato. Mol Biotechnol 31:193–202PubMedCrossRefGoogle Scholar
  16. Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity. doi:10.1016/j.immuni.2010.10.002
  17. Conley AJ, Zhu H, Le LC, Jevnikar AM, Lee BH, Brandle JE, Menassa R (2010) Recombinant protein production in a variety of Nicotiana hosts: a comparative analysis. Plant Biotechnol J. doi:10.1111/j.1467-7652.2010.00563.x
  18. Conrad U, Plagmann I, Malchow S, Sack M, Floss DM, Kruglov AA, Nedospasov SA, Rose-John S, Scheller J (2011) ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnol J 9:22–31PubMedCrossRefGoogle Scholar
  19. Crasto CJ, Feng J (2000) LINKER: a program to generate linker sequences for fusion proteins. Protein Eng 13:309–312PubMedCrossRefGoogle Scholar
  20. Crompton DW (2001) Ascaris and ascariasis. Adv Parasitol 48:285–375PubMedCrossRefGoogle Scholar
  21. Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242PubMedCrossRefGoogle Scholar
  22. Estrada A, Li B, Laarveld B (1998) Adjuvant action of Chenopodium quinoa saponins on the induction of antibody responses to intragastric and intranasal administered antigens in mice. Comp Immunol Microbiol Infect Dis 21:225–236PubMedCrossRefGoogle Scholar
  23. Field M (1979) Modes of action of enterotoxins from Vibrio cholerae and Escherichia coli. Rev Infect Dis 1:918–926Google Scholar
  24. Floss DM, Schallau K, Rose-John S, Conrad U, Scheller J (2009) Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol 28:37–45PubMedCrossRefGoogle Scholar
  25. Floss DM, Mockey M, Zanello G, Brosson D, Diogon M, Frutos R, Bruel T, Rodrigues V, Garzon E, Chevaleyre C, Berri M, Salmon H, Conrad U, Dedieu L (2010) Expression and immunogenicity of the mycobacterial Ag85B/ESAT-6 antigens produced in transgenic plants by elastin-like peptide fusion strategy. J Biomed Biotechnol 2010:274346PubMedCrossRefGoogle Scholar
  26. Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection—a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048PubMedCrossRefGoogle Scholar
  27. Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141PubMedCrossRefGoogle Scholar
  28. Greco R, Michel M, Guetard D, Cervantes-Gonzalez M, Pelucchi N, Wain-Hobson S, Sala F, Sala M (2007) Production of recombinant HIV-1/HBV virus-like particles in Nicotiana tabacum and Arabidopsis thaliana plants for a bivalent plant-based vaccine. Vaccine 25:8228–8240PubMedCrossRefGoogle Scholar
  29. Guerrero GG, Moreno-Fierros L (2007) Carrier potential properties of Bacillus thuringiensis Cry1A toxins for a diphtheria toxin epitope. Scand J Immunol 66:610–618PubMedCrossRefGoogle Scholar
  30. Gutiérrez-Ortega A, Avila-Moreno F, Saucedo-Arias LJ, Sánchez-Torres C, Gómez-Lim MA (2004) Expression of a single-chain human interleukin-12 gene in transgenic tobacco plants and functional studies. Biotechnol Bioeng 85:734–740PubMedCrossRefGoogle Scholar
  31. Gutiérrez-Ortega A, Sandoval-Montes C, de Olivera-Flores TJ, Santos-Argumedo L, Gómez-Lim MA (2005) Expression of functional interleukin-12 from mouse in transgenic tomato plants. Transgenic Res 14:877–885PubMedCrossRefGoogle Scholar
  32. Hammond RW, Nemchinov LG (2009) Plant production of veterinary vaccines and therapeutics. Curr Top Microbiol Immunol 332:79–102PubMedCrossRefGoogle Scholar
  33. Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268:714–716PubMedCrossRefGoogle Scholar
  34. Howard JA (2005) Commercialization of biopharmaceutical and bioindustrial proteins from plants. Crop Sci 45:468–472CrossRefGoogle Scholar
  35. Huang Z, Elkin G, Maloney BJ, Beuhner N, Arntzen CJ, Thanavala Y, Mason HS (2005) Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine 23:1851–1858PubMedCrossRefGoogle Scholar
  36. Kalthoff D, Giritch A, Geisler K, Bettmann U, Klimyuk V, Gleba Y, Hehnen HS, Beer M (2010) Immunization with plant-expressed hemagglutinin protects chickens from lethal highly pathogenic avian influenza virus H5N1 challenge infection. J Virol 84:12002–12010PubMedCrossRefGoogle Scholar
  37. Karlsson Hedestam GB, Fouchier RA, Phogat S, Burton DR, Sodroski J, Wyatt RT (2008) The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat Rev Microbiol 6:143–155PubMedCrossRefGoogle Scholar
  38. Kim TG, Galloway DR, Langridge WH (2004a) Synthesis and assembly of anthrax lethal factor-cholera toxin B-subunit fusion protein in transgenic potato. Mol Biotechnol 28:175–183PubMedCrossRefGoogle Scholar
  39. Kim TG, Gruber A, Langridge WH (2004b) HIV-1 gp120 V3 cholera toxin B subunit fusion gene expression in transgenic potato. Protein Expr Purif 37:196–202PubMedCrossRefGoogle Scholar
  40. Kim TG, Gruber A, Ruprecht RM, Langridge WH (2004c) Synthesis and assembly of SIVmac Gag p27 capsid protein cholera toxin B subunit fusion protein in transgenic potato. Mol Biotechnol 28:33–40PubMedCrossRefGoogle Scholar
  41. Kim TG, Ruprecht R, Langridge WH (2004d) Synthesis and assembly of a cholera toxin B subunit SHIV 89.6p Tat fusion protein in transgenic potato. Protein Expr Pur 35:313–319CrossRefGoogle Scholar
  42. Kuzel S, Vydra J, Triska J, Vrchotova N, Hruby M, Cigler P (2009) Elicitation of pharmacologically active substances in an intact medical plant. J Agric Food Chem 57:7907–7911PubMedCrossRefGoogle Scholar
  43. Lavelle EC (2005) Generation of improved mucosal vaccines by induction of innate immunity. Cell Mol Life Sci 62:2750–2770PubMedCrossRefGoogle Scholar
  44. Lee JY, Yu J, Henderson D, Langridge WH (2004) Plant-synthesized E. coli CFA/I fimbrial protein protects Caco-2 cells from bacterial attachment. Vaccine 23:222–231PubMedCrossRefGoogle Scholar
  45. Li D, O’Leary J, Huang Y, Huner NP, Jevnikar AM, Ma S (2006) Expression of cholera toxin B subunit and the B chain of human insulin as a fusion protein in transgenic tobacco plants. Plant Cell Rep 25:417–424PubMedCrossRefGoogle Scholar
  46. Licciardi PV, Underwood JR (2010) Plant-derived medicines: a novel class of immunological adjuvants. Int Immunopharmacol (in press)Google Scholar
  47. Makare N, Bodhankar S, Rangari V (2001) Immunomodulatory activity of alcoholic extract of Mangifera indica L. in mice. J Ethnopharmacol 78:133–137Google Scholar
  48. Martínez CA, Topal E, Giulietti AM, Talou JR, Mason H (2010) Exploring different strategies to express Dengue virus envelope protein in a plant system. Biotechnol Lett 32:867–875PubMedCrossRefGoogle Scholar
  49. Mason HS, Lam DM, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA 89:11745–11749PubMedCrossRefGoogle Scholar
  50. Massa S, Franconi R, Brandi R, Muller A, Mett V, Yusibov V, Venuti A (2010) Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine 25:3018–3021CrossRefGoogle Scholar
  51. Matoba N, Kajiura H, Cherni I, Doran JD, Bomsel M, Fujiyama K, Mor TS (2009) Biochemical and immunological characterization of the plant-derived candidate human immunodeficiency virus type 1 mucosal vaccine CTB–MPR. 649–684. Plant Biotech J 7:129–145CrossRefGoogle Scholar
  52. Matsumoto Y, Suzuki S, Nozoye T, Yamakawa T, Takashima Y, Arakawa T, Tsuji N, Takaiwa F, Hayashi Y (2009) Oral immunogenicity and protective efficacy in mice of transgenic rice plants producing a vaccine candidate antigen (As16) of Ascaris suum fused with cholera toxin B subunit. Transgenic Res 18:185–192PubMedCrossRefGoogle Scholar
  53. Menassa R, Du C, Yin ZQ, Ma S, Poussier P, Brandle J, Jevnikar AM (2007) Therapeutic effectiveness of orally administered transgenic low-alkaloid tobacco expressing human interleukin-10 in a mouse model of colitis. Plant Biotechnol J 5:50–59PubMedCrossRefGoogle Scholar
  54. Mett V, Lyons J, Musiychuk K, Chichester JA, Brasil T, Couch R, Sherwood R, Palmer GA, Streatfield SJ, Yusibov V (2007) A plant-produced plague vaccine candidate confers protection to monkeys. Vaccine 25:3014–3017PubMedCrossRefGoogle Scholar
  55. Michel M, Lone YC, Centlivre M, Roux P, Wain-Hobson S, Sala M (2007) Optimisation of secretion of recombinant HBsAg virus-like particles: impact on the development of HIV-1/HBV bivalent vaccines. Vaccine 25:1901–1911PubMedCrossRefGoogle Scholar
  56. Nagai T, Yamada H (1994) In vivo anti-influenza virus activity of kampo (Japanese herbal) medicine “Sho-seiryu-to” and its mode of action. Int J Immunopharmacol 16:605–613PubMedCrossRefGoogle Scholar
  57. Nagai T, Yamada H (1998) In vivo anti-influenza virus activity of Kampo (Japanese herbal) medicine “Sho-seiryu-to”—stimulation of mucosal immune system and effect on allergic pulmonary inflammation model mice. Immunopharmacol Immunotoxicol 20:267–281PubMedCrossRefGoogle Scholar
  58. Nagai T, Urata M, Yamada H (1996) In vivo anti-influenza virus activity of Kampo (Japanese herbal) medicine “Sho-seiryu-to”—effects on aged mice, against subtypes of a viruses and B virus, and therapeutic effect. Immunopharmacol Immunotoxicol 18:193–208PubMedCrossRefGoogle Scholar
  59. Nagai T, Suzuki Y, Kiyohara H, Susa E, Kato T, Nagamine T, Hagiwara Y, Tamura S, Yabe T, Aizawa C, Yamada H (2001) Onjisaponins, from the root of Polygala tenuifolia Willdenow, as effective adjuvants for nasal influenza and diphtheria–pertussis–tetanus vaccines. Vaccine 19:4824–4834PubMedCrossRefGoogle Scholar
  60. Nagai T, Kiyohara H, Munakata K, Shirahata T, Sunazuka T, Harigaya Y, Yamada H (2002) Pinellic acid from the tuber of Pinellia ternata Breitenbach as an effective oral adjuvant for nasal influenza vaccine. Int Immunopharmacol 2:1183–1193PubMedCrossRefGoogle Scholar
  61. Nashar TO, Amin T, Marcello A, Hirst TR (1993) Current progress in the development of the B subunits of cholera toxin and Escherichia coli heat-labile enterotoxin as carriers for the oral delivery of heterologous antigens and epitopes. Vaccine 11:235–240PubMedCrossRefGoogle Scholar
  62. Nozoye T, Takaiwa F, Tsuji N, Yamakawa T, Arakawa T, Hayashi Y, Matsumoto Y (2009) Production of Ascaris suum As14 protein and its fusion protein with cholera toxin B subunit in rice seeds. J Vet Med Sci 71:995–1000PubMedCrossRefGoogle Scholar
  63. Obregon P, Chargelegue D, Drake PM, Prada A, Nuttall J, Frigerio L, Ma JK (2006) HIV-1 p24–immunoglobulin fusion molecule: a new strategy for plant-based protein production. Plant Biotech J 4:195–207CrossRefGoogle Scholar
  64. Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J (2007) Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 16:239–249PubMedCrossRefGoogle Scholar
  65. Paul M, Ma JK (2010) Plant-made immunogens and effective delivery strategies. Expert Rev Vaccines 9:821–833PubMedCrossRefGoogle Scholar
  66. Pleschka S, Stein M, Schoop R, Hudson JB (2009) Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol J 6:197PubMedCrossRefGoogle Scholar
  67. Prentice MB, Rahalison L (2007) Plague. Lancet 369:1196–1207PubMedCrossRefGoogle Scholar
  68. Qian B, Shen H, Liang W, Guo X, Zhang Ch, Wang Y, Li G, Wu A, Cao K, Zhang D (2008) Immunogenicity of recombinant hepatitis B virus surface antigen fused with preS1 epitopes expressed in rice seeds. Transgenic Res 17:621–631PubMedCrossRefGoogle Scholar
  69. Quan FS, Compans RW, Cho YK, Kang SM (2007) Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine 25:272–282PubMedCrossRefGoogle Scholar
  70. Rehman J, Dillow JM, Carter SM, Chou J, Le B, Maisel AS (1999) Increased production of antigen-specific immunoglobulins G and M following in vivo treatment with the medicinal plants Echinacea angustifolia and Hydrastis canadensis. Immunol Lett 68:391–395PubMedCrossRefGoogle Scholar
  71. Rigano MM, Alvarez ML, Pinkhasov J, Jin Y, Sala F, Arntzen CJ, Walmsley AM (2004) Production of a fusion protein consisting of the enterotoxigenic Escherichia coli heat-labile toxin B subunit and a tuberculosis antigen in Arabidopsis thaliana. Plant Cell Rep 22:502–508PubMedCrossRefGoogle Scholar
  72. Rigano MM, Dreitz S, Kipnis AP, Izzo AA, Walmsley AM (2006) Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine 24:691–695PubMedCrossRefGoogle Scholar
  73. Robinson CR, Sauer RT (1998) Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc Natl Acad Sci USA 95:5929–5934Google Scholar
  74. Rosales-Mendoza S, Alpuche-Solís AG, Soria-Guerra RE, Moreno-Fierros L, Martínez-González L, Herrera-Díaz A, Korban SS (2009) Expression of an Escherichia coli antigenic fusion protein comprising the heat labile toxin B subunit and the heat stable toxin and its assembly as a functional oligomer in transplastomic tobacco plants. Plant J 57:45–54PubMedCrossRefGoogle Scholar
  75. Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Martínez-González L, Alpuche-Solís AG, Korban SS (2010a) Expression of an immunogenic F1–V fusion protein in lettuce as a plant-based vaccine against plague. Planta 232:409–416PubMedCrossRefGoogle Scholar
  76. Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Han Y, Alpuche-Solís AG, Korban SS (2010b) Transgenic carrot tap roots express the immunogenic F1–V fusion protein from Yersinia pestis are immunogenic in mice. J Plant Physiol 168:174–180PubMedCrossRefGoogle Scholar
  77. Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Govea-Alonso DO, Herrera-Díaz A, Korban SS, Alpuche-Solís AG (2011) Immunogenicity of nuclear-encoded LTB:ST fusion protein from Escherichia coli expressed in tobacco plants. Plant Cell Rep. doi:10.1007/s00299-011-1023-0
  78. Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts—oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495–510PubMedCrossRefGoogle Scholar
  79. Ryan EJ, Daly LM, Mills KH (2001) Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol 19:293–304PubMedCrossRefGoogle Scholar
  80. Sánchez-Hernández C, Gutiérrez-Ortega A, Aguilar-León D, Hernández-Pando R, Gómez-Lim M, Gómez-García B (2010) In vivo activity of plant-based interleukin-12 in the lung of Balb/c mouse. BMC Res Notes 3:151PubMedCrossRefGoogle Scholar
  81. Santi L, Batchelor L, Huang Z, Hjelm B, Kilbourne J, Arntzen CJ, Chen Q, Mason HS (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26:1846–1854PubMedCrossRefGoogle Scholar
  82. Schaetti C (2009) Vaccines for enteric diseases: update on recent developments. Expert Rev Vaccines 8:1653–1655Google Scholar
  83. Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57PubMedCrossRefGoogle Scholar
  84. Sharma MK, Jani D, Thungapathra M, Gautam JK, Meena LS, Singh Y, Ghosh A, Tyagi AK, Sharma AK (2008a) Expression of accessory colonization factor subunit A (ACFA) of Vibrio cholerae and ACFA fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). J Biotechnol 135:22–27PubMedCrossRefGoogle Scholar
  85. Sharma MK, Singh NK, Jani D, Sisodia R, Thungapathra M, Gautam JK, Meena LS, Singh Y, Ghosh A, Tyagi AK, Sharma AK (2008b) Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). Plant Cell Rep 27:307–318PubMedCrossRefGoogle Scholar
  86. Shchelkunov SN, Salyaev RK, Pozdnyakov SG, Rekoslavskaya NI, Nesterov AE, Ryzhova TS, Sumtsova VM, Pakova NV, Mishutina UO, Kopytina TV, Hammond RW (2006) Immunogenicity of a novel, bivalent, plant-based oral vaccine against hepatitis B and human immunodeficiency viruses. Biotechnol Lett 28:959–967PubMedCrossRefGoogle Scholar
  87. Shin EA, Lee JY, Kim TG, Park YK, Langridge WH (2006) Synthesis and assembly of an adjuvanted Porphyromonas gingivalis fimbrial antigen fusion protein in plants. Protein Expr Purif 47:99–109PubMedCrossRefGoogle Scholar
  88. Sing A, Rost D, Tvardovskaia N, Roggenkamp A, Wiedemann A, Kirschning CJ, Aepfelbacher M, Heesemann J (2002) Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med 196:1017–1024PubMedCrossRefGoogle Scholar
  89. Smith ML, Richter L, Arntzen CJ, Shuler ML, Mason HS (2003) Structural characterization of plant-derived hepatitis B surface antigen employed in oral immunization studies. Vaccine 21:4011–4021PubMedCrossRefGoogle Scholar
  90. Soria-Guerra RE, Rosales-Mendoza S, Márquez-Mercado C, López-Revilla L, Castillo-Collazo R, Alpuche-Solís AG (2007) Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene. Plant Cell Rep 26:961–968PubMedCrossRefGoogle Scholar
  91. Soria-Guerra RE, Alpuche-Solís AG, Rosales-Mendoza S, Moreno-Fierros L, Martínez-González L, Bendik E, Korban SS (2009) Expression of a multi-epitope DPT fusion protein in transplastomic tobacco plants retains both antigenicity and immunogenicity of all three components of the functional oligomer. Planta 229:1293–1302PubMedCrossRefGoogle Scholar
  92. Soria-Guerra RE, Rosales-Mendoza S, Moreno-Fierros L, Lopez-Revilla R, Alpuche-Solis AG (2011) Oral immunogenicity of tomato-derived sDPT polypeptide containing Corynebacterium diphtheriae, Bordetella pertussis and Clostridium tetani exotoxin epítopes. Plant Cell Rep 30:417–424PubMedCrossRefGoogle Scholar
  93. Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647Google Scholar
  94. Stoger E, Ma JKC, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotech 16:167–173Google Scholar
  95. Titball RW, Leary SE (1998) Plague. British Medical Bulletin 54 pp. 625–633Google Scholar
  96. Vázquez RI, Moreno-Fierros L, Neri-Bazán L, De La Riva GA, López-Revilla R (1999) Bacillus thuringiensis Cry1Ac protoxin is a potent systemic and mucosal adjuvant. Scand J Immunol 49:578–584PubMedCrossRefGoogle Scholar
  97. Vázquez-Padrón RI, Moreno-Fierros L, Neri-Bazán L, de la Riva GA, López-Revilla R (1999) Intragastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal antibody responses in mice. Life Sci 64:1897–1912Google Scholar
  98. Walmsley AM, Alvarez ML, Jin Y, Kirk DD, Lee SM, Pinkhasov J, Rigano MM, Arntzen CJ, Mason HS (2003) Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato. Plant Cell Rep 21:1020–1026PubMedCrossRefGoogle Scholar
  99. Welkos SL, Davis KM, Pitt LM, Worsham PL, Friedlander AM (1995) Studies on the contribution of the F1-capsule-associated plasmid pFra to the virulence of Yersinia pestis. Contrib Microbiol Immunol 13:299–305PubMedGoogle Scholar
  100. Williamson ED, Stephen ME, Griffin KF, Green M, Russel P, Leary SEC, Oyston PCF, Easterbrook T, Reddin KM, Robinson A, Titball RW (1995) A new improved sub-unit vaccine for plague: the basis of protection. FEMS Immunol Med Microbiol 12:223–230PubMedCrossRefGoogle Scholar
  101. Williamson ED, Eley SM, Stagg AJ, Green M, Russell P, Titball RW (1997) A sub-unit vaccine elicits IgG in serum, spleen cell culture and bronchial washing and protects immunized animals against pneumonic plague. Vaccine 15:1079–1084PubMedCrossRefGoogle Scholar
  102. Yu J, Langridge WH (2001) A plant-based multicomponent vaccine protects mice from enteric diseases. Nat Biotechnol 19:548–552PubMedCrossRefGoogle Scholar
  103. Zhang B, Yang YH, Lin YM, Rao Q, Zheng GG, Wu KF (2003) Expression and production of bioactive human interleukin-18 in transgenic tobacco plants. Biotechnol Lett 25:1629–1635PubMedCrossRefGoogle Scholar
  104. Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AM, Maloney A, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotech J 6:897–913CrossRefGoogle Scholar
  105. Zimmermann J, Saalbach I, Jahn D, Giersberg M, Haehnel S, Wedel J, Macek J, Zoufal K, Glünder G, Falkenburg D, Kipriyanov SM (2009) Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens. BMC Biotechnology 9:74CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ruth Elena Soria-Guerra
    • 1
  • Leticia Moreno-Fierros
    • 2
  • Sergio Rosales-Mendoza
    • 1
  1. 1.Laboratorio de biofarmacéuticos recombinantes, Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosiMexico
  2. 2.Inmunidad en Mucosas, UBIMED, FES-IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaMexico

Personalised recommendations