Plant Cell Reports

, Volume 30, Issue 5, pp 689–694

Metabolic engineering of artemisinin biosynthesis in Artemisia annua L.

  • Benye Liu
  • Hong Wang
  • Zhigao Du
  • Guofeng Li
  • Hechun Ye
Review

Abstract

Artemisinin, a sesquiterpene lactone isolated from the Chinese medicinal plant Artemisia annua L., is an effective antimalarial agent, especially for multi-drug resistant and cerebral malaria. To date, A. annua is still the only commercial source of artemisinin. The low concentration of artemisinin in A. annua, ranging from 0.01 to 0.8% of the plant dry weight, makes artemisinin relatively expensive and difficult to meet the demand of over 100 million courses of artemisinin-based combinational therapies per year. Since the chemical synthesis of artemisinin is not commercially feasible at present, another promising approach to reduce the price of artemisinin-based antimalarial drugs is metabolic engineering of the plant to obtain a higher content of artemisinin in transgenic plants. In the past decade, we have established an Agrobacterium-mediated transformation system of A. annua, and have successfully transferred a number of genes related to artemisinin biosynthesis into the plant. The various aspects of these efforts are discussed in this review.

Keywords

Artemisia annua Artemisinin Metabolic engineering Metabolic profiling 

References

  1. Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998PubMedCrossRefGoogle Scholar
  2. Aquil S, Husaini AM, Abdin MZ, Rather GM (2009) Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med 75:1453–1458PubMedCrossRefGoogle Scholar
  3. Banerjee S, Zehra M, Gupta MM, Kumar S (1997) Agrobacterium rhizogenes-mediated transformation of Artemisia annua: production of transgenic plants. Planta Med 63:467–469PubMedCrossRefGoogle Scholar
  4. Bertea CM, Freije JR, van der Woude H, Verstappen FW, Perk L, Marquez V, De Kraker JW, Posthumus MA, Jansen BJ, de Groot A, Franssen MC, Bouwmeester HJ (2005) Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med 71:40–47PubMedCrossRefGoogle Scholar
  5. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394PubMedCrossRefGoogle Scholar
  6. Bouwmeester HJ, Wallaart TE, Janssen MH, van Loo B, Jansen BJ, Posthumus MA, Schmidt CO, De Kraker JW, Konig WA, Franssen MC (1999) Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52:843–854PubMedCrossRefGoogle Scholar
  7. Brown GD (1994) Cadinanes from Artemisia annua that may be intermediates in the biosynthesis of artemisinin. Phytochemistry 36:637–641CrossRefGoogle Scholar
  8. Brown GD, Sy LK (2004) In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. Tetrahedron 60:1139–1159CrossRefGoogle Scholar
  9. Brown GD, Sy LK (2007) In vivo transformations of artemisinic acid in Artemisia annua plants. Tetrahedron 63:9548–9566CrossRefGoogle Scholar
  10. Chang YJ, Song SH, Park SH, Kim SU (2000) Amorpha-4, 11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis. Arch Biochem Biophys 383:178–184PubMedCrossRefGoogle Scholar
  11. Chen DH, Liu CJ, Ye HC, Li GF, Liu BY, Meng YL, Chen XY (1999) Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production. Plant Cell Tissue Organ Cult 57:157–162CrossRefGoogle Scholar
  12. Chen D, Ye H, Li G (2000) Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 155:179–185PubMedCrossRefGoogle Scholar
  13. Dayan FE, Hernandez A, Allen SN, Noraes RM, Vroman JA, Avery MA, Duke SO (1999) Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry 50:607–614CrossRefGoogle Scholar
  14. Duffy PE, Mutabingwa TK (2006) Artemisinin combination therapies. Lancet 367:2037–2039PubMedCrossRefGoogle Scholar
  15. Duke SO, Paul RN (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118CrossRefGoogle Scholar
  16. Geng S, Ma M, Ye HC, Liu BY, Li GF, Chong K (2001) Effects of ipt gene expression on the physiological and chemical characteristics of Artemisia annua L. Plant Sci 160:691–698CrossRefGoogle Scholar
  17. Han JL, Wang H, Ye HC, Liu Y, Li ZQ, Zhang YS, Li GF (2005) High efficiency of genetic transformation and regeneration of Artemisia annua L. via Agrobacterium tumefaciens-mediated procedure. Plant Sci 16:73–80CrossRefGoogle Scholar
  18. Han JL, Liu BY, Ye HC, Wang H, Li ZQ, Li GF (2006) Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J Integr Plant Biol 48:482–487CrossRefGoogle Scholar
  19. Hugueney P, Bouvier F, Badillo A, Quennemet J, d’Harlingue A, Camara B (1996) Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits. Plant Physiol 111:619–626PubMedCrossRefGoogle Scholar
  20. Li Y, Huang H, Wu YL (2006a) Qinghaosu (artemisinin)—a fantastic antimalarial drug from a traditional Chinese medicine. In: Liang XT, Fang WS (eds) Medicinal Chemistry of Bioactive Natural Products. Wiley, New York, pp 183–256Google Scholar
  21. Li ZQ, Liu Y, Liu B, Wang H, Ye HC, Li GF (2006b) Cloning, E. coli expression and molecular analysis of amorpha-4, 11-diene synthase from a high-yield strain of Artemisia annua L. J Integr Plant Biol 48:1486–1492CrossRefGoogle Scholar
  22. Liu JM, Ni MY, Fan JF, Tu YY, Wu ZH, Wu YL, Chou WS (1979) Structure and reaction of arteannuin. Acta Chimica Sinica 37:120–143Google Scholar
  23. Liu CJ, Heinstein P, Chen XY (1999) Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors. Mol Plant Microbe Interact 12:1095–1104PubMedCrossRefGoogle Scholar
  24. Ma C, Wang H, Lu X, Xu G, Liu B (2008) Metabolic fingerprinting investigation of Artemisia annua L. in different stages of development by gas chromatography and gas chromatography-mass spectrometry. J Chromatogr A 1186:412–419PubMedCrossRefGoogle Scholar
  25. Ma C, Wang HH, Lu X, Wang H, Xu G, Liu B (2009a) Terpenoid metabolic profiling analysis of transgenic Artemisia annua L. by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Metabolomics 5:497–506CrossRefGoogle Scholar
  26. Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Li G, Ye H, Liu B (2009b) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 50:2146–2161PubMedCrossRefGoogle Scholar
  27. Mercke P, Crock J, Croteau R, Brodelius PE (1999) Cloning, expression, and characterization of epi-cedrol synthase, a sesquiterpene cyclase from Artemisia annua L. Arch Biochem Biophys 369:213–222PubMedCrossRefGoogle Scholar
  28. Mihalka V, Balazs E, Nagy I (2003) Binary transformation systems based on ‘shooter’ mutants of Agrobacterium tumefaciens: a simple, efficient and universal gene transfer technology that permits marker gene elimination. Plant Cell Rep 21:778–784PubMedGoogle Scholar
  29. Olsson ME, Olofsson LM, Lindahl AL, Lundgren A, Brodelius M, Brodelius PE (2009) Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123–1128PubMedCrossRefGoogle Scholar
  30. Payne T, Clement J, Arnold D, Lloyd A (1999) Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 126:671–682PubMedGoogle Scholar
  31. Perez-Rodriguez M, Jaffe FW, Butelli E, Glover BJ, Martin C (2005) Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 132:259–370CrossRefGoogle Scholar
  32. Petersen M (2007) Current status of metabolic phytochemistry. Phytochemistry 68:2847–2860PubMedCrossRefGoogle Scholar
  33. Schramek N, Wang H, Romisch-Margl W, Keil B, Radykewicz T, Winzenhorlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W (2010) Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry 71:179–187PubMedCrossRefGoogle Scholar
  34. Smigocki AC (1991) Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Mol Biol 16:105–115PubMedCrossRefGoogle Scholar
  35. Smigocki A, Neal JW Jr, McCanna I, Douglass L (1993) Cytokinin-mediated insect resistance in Nicotiana plants transformed with the ipt gene. Plant Mol Biol 23:325–335PubMedCrossRefGoogle Scholar
  36. Teixeira da Silva JA (2003) Anthemideae: advances in tissue culture, genetics and transgenic biotechnology. Afr J Biotechnol 2:547–556Google Scholar
  37. Teoh KT, Polichuk DR, Reed DW, Covello PS (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635–642CrossRefGoogle Scholar
  38. Towler MJ, Weathers PJ (2007) Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep 26:2129–2136PubMedCrossRefGoogle Scholar
  39. Vergauwe A, Cammaert R, Vandenberghe D, Genetello C, Inze D, VanMontagu M, VandenEeckhout E (1996) Agrobacterium tumefaciens-mediated transformation of Artemisia annua and regeneration of transgenic plants. Plant Cell Rep 15:929–933CrossRefGoogle Scholar
  40. Vergauwe A, Van Geldre E, Inze D, Van Montagu M, Van den Eeckhout E (1998) Factors influencing Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. Plant Cell Rep 18:105–110CrossRefGoogle Scholar
  41. Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187PubMedCrossRefGoogle Scholar
  42. Wallaart TE, Pras N, Quax WJ (1999) Isolation and identification of dihydroartemisinic acid hydroperoxide from Artemisia annua: a novel biosynthetic precursor of artemisinin. J Nat Prod 62:1160–1162PubMedCrossRefGoogle Scholar
  43. Wang H, Ge L, Ye HC, Chong K, Liu BY, Li GF (2004) Studies on the effects of fpf1 gene on Artemisia annua flowering time and on the linkage between flowering and artemisinin biosynthesis. Planta Med 70:347–352PubMedCrossRefGoogle Scholar
  44. Wang H, Liu Y, Chong K, Liu BY, Ye HC, Li ZQ, Yan F, Li GF (2007) Earlier flowering induced by over-expression of CO gene does not accompany increase of artemisinin biosynthesis in Artemisia annua. Plant biol (Stuttgart, Germany) 9:442–446CrossRefGoogle Scholar
  45. White NJ (2008) Qinghaosu (artemisinin): the price of success. Science 320:330–334PubMedCrossRefGoogle Scholar
  46. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447PubMedCrossRefGoogle Scholar
  47. Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101:6786–6791PubMedCrossRefGoogle Scholar
  48. Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJ, Ross AR, Covello PS (2008) The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283:21501–21508PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Benye Liu
    • 1
    • 2
  • Hong Wang
    • 1
  • Zhigao Du
    • 1
  • Guofeng Li
    • 1
  • Hechun Ye
    • 1
  1. 1.Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of BotanyThe Chinese Academy of SciencesBeijingChina
  2. 2.Institute of Pharmaceutical BiologyTechnical University BraunschweigBraunschweigGermany

Personalised recommendations