Plant Cell Reports

, Volume 29, Issue 12, pp 1339–1349 | Cite as

Transformation of carotenoid biosynthetic genes using a micro-cross section method in kiwifruit (Actinidia deliciosa cv. Hayward)

  • Misun Kim
  • Seong-Cheol Kim
  • Kwan Jeong Song
  • Ho Bang Kim
  • In-Jung Kim
  • Eun-Young Song
  • Seung-Jong Chun
Original Paper

Abstract

Genetic transformation using a micro-cross section (MCS) technique was conducted to improve the carotenoid content in kiwifruit (Actinidia deliciosa cv. Hayward). The introduced carotenoid biosynthetic genes include geranylgeranyl diphosphate synthase (GGPS), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), β-carotene hydroxylase (CHX), and phytoene synthase (PSY). The transformed explants were selected on half-strength MS medium containing 0.001 mg l−1 of 2,4-D and 0.1 mg l−1 of zeatin, either 5 mg l−1 hygromycin or 25 mg l−1 kanamycin, and 500 mg l−1 cefotaxime. The genomic PCR, genomic Southern blot analysis, and RT-PCR were performed to confirm the integration and expression of the transgenes. The transformation efficiencies of either kanamycin- or hygromycin-resistant shoots ranged from 2.9 to 22.1% depending on the target genes, and from 2.9 to 24.2% depending on the reporter genes. The selection efficiencies ranged from 66.7 to 100% for the target genes and from 95.8 to 100% for the reporter genes. Changes of carotenoid content in the several PCR-positive plants were determined by UPLC analysis. As a result, transgenic plants expressing either GGPS or PSY increased about 1.2- to 1.3-fold in lutein or β-carotene content compared to non-transgenic plants. Our results suggest that the Agrobacterium-mediated transformation efficiency of kiwifruit can be greatly increased by this MCS method and that the carotenoid biosynthetic pathway can be modified in kiwifruit by genetic transformation. Our results further suggest that GGPS and PSY genes could be major target genes to increase carotenoid contents in kiwifruit.

Keywords

Agrobacterium-mediated transformation Carotenoid biosynthetic genes Kiwifruit Micro-cross sections 

References

  1. Ampomah-Dwamena C, McGhie T, Wibisono R, Montefiori M, Hellens RP, Allan AC (2009) The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. J Exp Bot 60:3765–3779CrossRefPubMedGoogle Scholar
  2. Britton G (1991) Carotenoids. Methods plant biochem 7:473–518Google Scholar
  3. Cano MP (1991) HPLC separation of chlorophyll and caretenoid pigments of four kiwi fruit cultivars. J Agric Food Chem 39:1786–1791CrossRefGoogle Scholar
  4. Charest PJ, Holbrook LA, Gabard J, Iyer VN, Miki BL (1988) Agrobacterium-mediated transformation of thin cell layer explants from Brassica napus L. Theor Appl Genet 75:438–445CrossRefGoogle Scholar
  5. Conti A, Pancaldi S, Fambrini M, Michelotti V, Bonora A, Salvini M, Pugliesi C (2004) A deficiency at the gene coding for ζ-carotene desaturase characterizes the sunflower non dormant-1 mutant. Plant Cell Physiol 45:445–455CrossRefPubMedGoogle Scholar
  6. Davison PA, Hunter CN, Horton P (2002) Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206CrossRefPubMedGoogle Scholar
  7. Dellaporta SL, Wood J, Hicks SL (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  8. Ferguson AR (1999) Kiwifruit cultivars: breeding and selection. Acta Hort 498:43–51Google Scholar
  9. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265CrossRefPubMedGoogle Scholar
  10. Fraser LG, Kent J, Harvey CF (1995) Transformation studies of Actinidia chinensis planch. NZ J Crop Hort 23:407–413Google Scholar
  11. Fraser PD, Rrase S, Kiano JW, Shipton CA, Mills PB, Drake R, Schuch W, Bramley PM (2001) Elevation of carotenoid in tomato by genetic manipulation. J Sci Agric 81:822–827CrossRefGoogle Scholar
  12. Garcia-Asua G, Lang HP, Cogdell RJ, Hunter CN (1998) Carotenoid diversity: a modular role for the phytoene desatruase step. Trends Plant Sci 3:445–449CrossRefGoogle Scholar
  13. Gutiérrez E-MA, Luth D, Moore (1997) Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 16:745–753CrossRefGoogle Scholar
  14. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180CrossRefGoogle Scholar
  15. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Trans Res 2:208–218CrossRefGoogle Scholar
  16. Hosokawa K, Matsuki R, Oikawa Y, Yamamura S (2000) Production of transgenic gentian plants by particle bombardment of suspension-culture cells. Plant Cell Rep 19:454–458CrossRefGoogle Scholar
  17. Janssen BJ, Gardner RC (1993) The use of transient GUS expression to develop an Agrobacterium-mediated gene transfer system for kiwifruit. Plant Cell Rep 13:28–31CrossRefGoogle Scholar
  18. Jung Y-H, Kim KH, Kang SH, Jun S-J, Oh MY, Kim S-C (2003) Phylogenetic analysis of the Genus Actinidia in Korea inferred from two non-coding chloroplast DNA sequences. Kor J Genet 25:95–101Google Scholar
  19. Kim SC, Jung YH, Kim M, Koh S-C, Song K, Kim HB (2004) Characterization of a RAPD fragment unique to species with hairy fruit skin in the genus Actinidia. J Plant Biol 47:210–215CrossRefGoogle Scholar
  20. Kim M, Kim S-C, Moon D-Y, Song KJ (2007) Rapid shoot propagation from micro-cross sections of kiwifruit (Actinidia deliciosa cv. ‘Hayward’). J Plant Biol 50:681–686CrossRefGoogle Scholar
  21. Kobayashi S, Nakamura Y, Kaneyoshi J, Higo H, Higo K-I (1996) Transformation of kiwifruit (Actinidia chinensis) and Trifoliate orange (Poncitrus trifoliata) with a synthetic gene encoding the human epidermal growth factor (hEGF). J Japan Soc Hort Sci 64:763–769CrossRefGoogle Scholar
  22. Kobayashi S, Ding CK, Nakamura Y, Nakajima I (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratol-glucoside). Plant Cell Rep 19:904–910CrossRefGoogle Scholar
  23. Kusaba S, Kano-Murakami Y, Matsuoka M, Matsuta N, Sakamoto T, Fukumoto M (1999) Expression of the rice homeobox gene, OSH1, causes morphological changes in transgenic kiwifruit. J Jpn Soc Hortic Sci 68:482–486CrossRefGoogle Scholar
  24. Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A, Weiss D (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breeding 9:103–111CrossRefGoogle Scholar
  25. Lee EJ, Noh EW, Park JI (2001) Comparative analysis of resistance to antibiotics in Populus alba × P glandulosa transformed by npt II or hpt gene. Korean J Plant Tissue Cult 28:243–248 (in Korean)Google Scholar
  26. Lee-Stadelmann OY, Lee SW, Hackett WP, Read PE (1989) The formation of adventitious buds in vitro on micro-cross sections of hybrid Populus leaf midveins. Plant Sci 61:263–272CrossRefGoogle Scholar
  27. Lulsdorf MM, Rempel H, Jackson JA, Baliski DS, Hobbs SLA (1991) Optimizing the production of transformed pea (Pisum sativum L.) callus using disarmed Agrobacterium tumefaciens strains. Plant Cell Rep 9:479–483CrossRefGoogle Scholar
  28. MacDiarmid CWB (1993) Kiwifruit ACC oxidase genes. Unpublished MSc thesis, Auckland University, Auckland, New ZealandGoogle Scholar
  29. McNeilage MA, Considine JA (1989) Chromosome studies in some Actinidia taxa and implications for breeding. N Z J Botany 27:71–81Google Scholar
  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  31. Nakamura Y, Sawada H, Kobayashi S, Nakajima I, Yoshikawa M (1999) Expression of soybean β-1, 3-endoglucanase cDNA and effect on disease tolerance in kiwifruit plants. Plant Cell Rep 18:527–532CrossRefGoogle Scholar
  32. Nhut DT, Bui VL, Teixeira Da Silva JA, Aswath CR (2001) Thin cell layer culture system in Lilium: regeneration and transformation perspectives. In Vitro Cell Dev Biol-Plant 37:516–523CrossRefGoogle Scholar
  33. Park Sh, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Efficient and genotype-independent Agrobacterium-mediated tomato transformation. J Plant Physiol 160:1253–1257CrossRefPubMedGoogle Scholar
  34. Peña L, Cervera M, Jurverae J, Navarro A, Pina JA, Durar-Vila N, Navarro L (1995) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14:616–619CrossRefGoogle Scholar
  35. Rodriguez-Amaya DB (1997) Carotenoids and food preparation: the retention of provitamin A carotenoids in prepared, processed, and stored foods. John Snow, Inc/OMNI Project, BrazilGoogle Scholar
  36. Rugini E, Pellegrineschi A, Mencuccini M, Mariotti D (1991) Increase of rooting ability in the woody species kiwifruit (Actinidia deliciosa A Chev.) by transformation with Agrobacterium rhizogenes rol genes. Plant Cell Rep 10:291–295CrossRefGoogle Scholar
  37. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412CrossRefPubMedGoogle Scholar
  38. Shirkot P, Sharma DR, Mohapatra T (2001) Molecular identification of sex in Actinidia deliciosa var deliciosa by RAPD markers. Scientia Hort 94:33–39CrossRefGoogle Scholar
  39. Sun HJ, Uchii S, Watanabe S, Ezura HA (2006) Highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431CrossRefPubMedGoogle Scholar
  40. Teixeira Da Silva JA (2003) Thin cell la layer technology in ornamental plant micropropagation and biotehchnology. African J Biotech 2:683–691Google Scholar
  41. Teixeira Da Silva JA, Fukai S (2002) Increasing transient and subsequent stable transgene expression in chrysanthemum following optimization of particle bombardment and Agroinfection parameters. Plant Biotechnol 19:229–240Google Scholar
  42. Uematsu C, Murase M, Ichikawa H, Imamura J (1991) Agrobacterium-mediated transformation and regeneration of kiwifruit. Plant Cell Rep 10:286–290CrossRefGoogle Scholar
  43. U.S. Department of Agriculture, Agricultural Research Service (2009) USDA nutrient database for standard reference. Release 22. Nutrient data laboratory home page. http://www.ars.usda.gov/ba/bhnrc/ndl
  44. Vidya CSS, Manoharan M, Kumar CTR, Savithri HS, Sita GL (2000) Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum var Pusa Ruby) with coat-protein gene of Physalis mottle tymovirus. J Plant Physiol 156:106–111Google Scholar
  45. Wang T, Ran Y, Atkinson RG, Gleave AP, Cohen D (2006) Transformation of Actinidia eriantha: a potential species for functional genomics studies in Actinidia. Plant Cell Rep 25:425–431CrossRefPubMedGoogle Scholar
  46. Wang T, Atkinson R, Jasson B-J (2007) The choice of Agrobacterium strain for transformation of kiwifruit. Acta Hort 753:227–232Google Scholar
  47. Whittaker DJ (1997) Ethylene biosynthetic genes in Actinidia chinensis. PhD thesis, Auckland University, Auckland, New ZealandGoogle Scholar
  48. Wu R, Hellens RP, Walton EF (2006) Characterization expression analysis of proline metabolism genes during bud break in kiwifruit (unpublished)Google Scholar
  49. Xiao ZA, Wan LC, Han BW (2004) An interspecific somatic hybrid between Actinidia chinensis and Actinidia kolomikta and its chilling tolerance. Plant Cell Tiss Org Cult 79:299–306CrossRefGoogle Scholar
  50. Yamakawa Y, Chen LH (1996) Agrobacterium rhizogenes-mediated transformation of kiwifruit (Actinidia deliciosa) by direct formation of adventitious buds. J Japan Soc Hort Sci 64:741–747CrossRefGoogle Scholar
  51. Ye X, Al-Babili S, Klbil A, Zhang J, Lucca P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305CrossRefPubMedGoogle Scholar
  52. Zhang J, Beuzenberg EJ (1983) Chromosome numbers in two varieties of Actinidia chinensis Planch. N Z J Bot 21:353–355Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Misun Kim
    • 1
  • Seong-Cheol Kim
    • 1
  • Kwan Jeong Song
    • 2
  • Ho Bang Kim
    • 3
  • In-Jung Kim
    • 4
  • Eun-Young Song
    • 1
  • Seung-Jong Chun
    • 1
  1. 1.Agricultural Research Center for Climate ChangeNational Institute of Horticultural and Herbal Science, Rural Development AdministrationJejuKorea
  2. 2.Faculty of Bioscience and IndustryJeju National UniversityJejuKorea
  3. 3.The Natural Science Research InstituteMyongji UniversityYonginKorea
  4. 4.Faculty of Biotechnology and Subtropical Horticulture Research InstituteJeju National UniversityJejuKorea

Personalised recommendations