Plant Cell Reports

, Volume 29, Issue 10, pp 1187–1201 | Cite as

Characterization of the multiple resistance traits of somatic hybrids between Solanum cardiophyllum Lindl. and two commercial potato cultivars

  • Ramona ThiemeEmail author
  • Elena Rakosy-Tican
  • Marion Nachtigall
  • Jörg Schubert
  • Thilo Hammann
  • Olga Antonova
  • Tatjana Gavrilenko
  • Udo Heimbach
  • Thomas Thieme
Original Paper


Interspecific somatic hybrids between commercial cultivars of potato Solanum tuberosum L. Agave and Delikat and the wild diploid species Solanum cardiophyllum Lindl. (cph) were produced by protoplast electrofusion. The hybrid nature of the regenerated plants was confirmed by flow cytometry, simple sequence repeat (SSR), amplified fragment length polymorphism (AFLP), microsatellite-anchored fragment length polymorphism (MFLP) markers and morphological analysis. Somatic hybrids were assessed for their resistance to Colorado potato beetle (CPB) using a laboratory bioassay, to Potato virus Y (PVY) by mechanical inoculation and field trials, and foliage blight in a greenhouse and by field trials. Twenty-four and 26 somatic hybrids of cph + cv. Agave or cph + cv. Delikat, respectively, showed no symptoms of infection with PVY, of which 3 and 12, respectively, were also resistant to foliage blight. One hybrid of cph + Agave performed best in CPB and PVY resistance tests. Of the somatic hybrids that were evaluated for their morphology and tuber yield in the field for 3 years, four did not differ significantly in tuber yield from the parental and standard cultivars. Progeny of hybrids was obtained by pollinating them with pollen from a cultivar, selfing or cross-pollination. The results confirm that protoplast electrofusion can be used to transfer the CPB, PVY and late blight resistance of cph into somatic hybrids. These resistant somatic hybrids can be used in pre-breeding studies, molecular characterization and for increasing the genetic diversity available for potato breeding by marker-assisted combinatorial introgression into the potato gene pool.


Colorado potato beetle resistance Resistance to foliage blight Molecular markers Morphology Resistance to Potato virusProtoplast electrofusion 



Amplified fragment length polymorphism


(delta)(relative) Area under disease progress curve


Colorado potato beetle


Solanum cardiophyllum


Commercial variety


Double antibody sandwich enzyme-linked immunosorbent assay


Desoxyribonucleic acid




Endosperm balance number


The Gross Lüsewitz Potato Collections


Immunocapture reverse transcription polymerase chain reaction


Plant breeding and acclimatization Institute


Leibniz Institute of Plant Genetics and Crop Plant Research


Julius Kühn Institute


Microsatellite-anchored fragment length polymorphism


Mean relative growth rate


Nordring-Kartoffelzucht-und Vermehrungs-GmbH Groß Lüsewitz


Potato virus Y


Station de recherche Agroscope Changins


The Scottish agricultural science agency


Somatic hybrid(s)


Simple sequence repeat



The German–Romanian and German-Russian Bilateral Projects are acknowledged for supporting part of this research (E. R-T, O. A, T. G). The authors wish to thank Helga Baumann, Hildegard Dreier, Ulrike Busch, Renate Ionasku, Brigitte Deumlich and Petra Hertling for excellent technical assistance. We gratefully thank T. Dixon for his helpful revision of the manuscript.


  1. Boiteau G, Le Blanc J (1992) Colorado potato beetle: Life stages. Agriculture Canada Publication 1878/E.
  2. Chen Q, Kawchuk M, Lynch DR, Goettel MS, Fujimoto DK (2003) Identification of late blight, Colorado potato beetle, and blackleg resistance in three Mexican and two South American wild 2x (1EBN) Solanum species. Am J Potato Res 80:9–19CrossRefGoogle Scholar
  3. Darsow U, Junges W, Oertel H (1988) Die Bedeutung der Prädisposition für die Laborprüfung von Kartoffelblättern auf relative Resistenz gegenüber Phytophthora infestans (Mont.) de Bary. Arch Phytopathol Pflanzenschutz 24:109–119CrossRefGoogle Scholar
  4. Dinu I, Thieme R (2001) Utilization of genetic resources in Solanum for potato breeding through biotechnological methods. Schr Genet Resour 16:120–127Google Scholar
  5. Flanders KL, Hawkes JG, Radcliffe EB, Lauer FI (1992) Insect resistance in potatoes: sources, evolutionary relationship, morphological and chemical defences, and ecogeographical associations. Euphytica 61:83–111CrossRefGoogle Scholar
  6. Gavrilenko T (2007) Potato Cytogenetics. In: Vreugdenhil D (ed) Potato biology and biotechnology: advances and perspectives, 1st edn. Elsevier, Amsterdam, pp 203–216Google Scholar
  7. Gavrilenko T, Thieme R, Rokka V-M (2001) Cytogenetic analysis of Lycopersicon esculentum (+) Solanum etuberosum somatic hybrids and their androgenic regenerants. Theor Appl Genet 103:231–239CrossRefGoogle Scholar
  8. Hammann T, Truberg B, Thieme R (2009) Improving resistance to late blight (Phytophthora infestans [Mont.] de Bary) by using interspecific crosses in potato (Solanum tuberosum ssp.). In: Feldmann F, Alford DV, Furk C (eds) Proceedings of the 3rd international symposium on plant protection and plant health in Europe, 14–16 May 2009, Berlin, pp 428–436Google Scholar
  9. Hawkes JG (1990) The potato. Evolution, biodiversity and genetic resources. Smithsonian Institution Press, Washington, DC, pp 1–259Google Scholar
  10. Helgeson JP, Pohlman JD, Austin S, Haberlach GT, Wielgus SM, Ronis D, Zambolim L, Tooley P, McGrath JM, James RV, Stevenson WR (1998) Somatic hybrids between Solanum bulbocastanum and potato: a new source of resistance to late blight. Theor Appl Genet 96:738–742CrossRefGoogle Scholar
  11. Hollander M, Wolfe DA (1973) Non-parametric statistical methods. Wiley, New YorkGoogle Scholar
  12. Jackson SA, Hanneman RE Jr (1999) Crossability between cultivated and wild tuber-and non-tuber-bearing Solanums. Euphytica 109:51–67CrossRefGoogle Scholar
  13. Jansky S (2006) Overcoming hybridization barriers in potato. Plant Breeding 125:1–12CrossRefGoogle Scholar
  14. Jansky S, Hamernik A (2009) The introgression of 2x 1EBN Solanum species into the cultivated potato using Solanum verrucosum as a bridge. Genet Resour Crop Evol 56:1107–1115CrossRefGoogle Scholar
  15. Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE Jr (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9Google Scholar
  16. Kasai K, Morikawa Y, Sorri VA, Valkonen JPT, Gebhardt C, Watanabe KN (2000) Development of SCAR markers to the PVY resistance gene Ry adg based on a common feature of plant disease resistance genes. Genome 43:1–8CrossRefPubMedGoogle Scholar
  17. Marks GE (1954) An acetocarmine glycerol jelly for use in pollen fertility counts. Stain Technol 29:277PubMedGoogle Scholar
  18. McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180CrossRefGoogle Scholar
  19. Naess SK, Bradeen JM, Wielgus SM, Haberlach GT, McGrath JM, Helgeson JP (2000) Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theor Appl Genet 101:697–704CrossRefGoogle Scholar
  20. Orczyk W, Przetakiewicz J, Nadolska-Orczyk A (2003) Somatic hybrids of Solanum tuberosum—application to genetics and breeding. Plant Cell Tiss Organ Cult 74:1–13CrossRefGoogle Scholar
  21. Provan J, Powell W, Waugh R (1996) Microsatellite analysis of relationships within cultivated potato (Solanum tuberosum). Theor Appl Genet 92:1078–1084CrossRefGoogle Scholar
  22. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefPubMedGoogle Scholar
  23. SAS Institute Inc., Cary, NC, USA (2008)Google Scholar
  24. Schubert J, Mattern D, Matoušek J (2002) Zur Stabilität transgener Virusresistenz am Beispiel der Kartoffel/PVY. Vortr Pflanzenzüchtg 54:349–352Google Scholar
  25. Schubert J, Fomitcheva V, Sztangret-Wisniewska J (2007) Differentiation of Potato virus Y strains using improved sets of diagnostic PCR-primers. J Virol Methods 140:66–74CrossRefPubMedGoogle Scholar
  26. Shi YZ, Chen Q, Li HY, Beasley D, Lynch DR (2006) Somatic hybridization between Solanum tuberosum and S. cardiophyllum. Can J Plant Sci 86:539–545Google Scholar
  27. Solomon-Blackburn RM, Barker H (2001) A review of host major–gene resistance to potato viruses X, Y, A and V in potato, genes, genetics and mapped locations. Heredity 86:8–16CrossRefPubMedGoogle Scholar
  28. Song Y-S, Schwarzfischer A (2008) Development of STS markers for selection of extreme resistance (Ry sto) to PVY and maternal pedigree analysis of extremely resistant cultivars. Am J Pot Res 85:159–170CrossRefGoogle Scholar
  29. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133CrossRefPubMedGoogle Scholar
  30. Thieme R, Thieme T (2006) Screening von Wildkartoffelarten aus Genbanken auf Fitness von Kartoffelkäferlarven. Vortr Pflanzenzüchtg 68:66Google Scholar
  31. Thieme R, Darsow U, Rakosy-Tican L, Kang Z, Gavrilenko T, Antonova O, Heimbach U, Thieme T (2004) Use of somatic hybridisation to transfer resistance to late blight and potato virus Y (PVY) into cultivated potato. Plant Breed Seed Sci 50:113–118Google Scholar
  32. Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Heimbach U, Schubert J, Nachtigall M, Thieme T (2005) Utilization of the resistance to pathogens and pests in wild species of Solanum for breeding potatoes. In: Ritter E, Carrascal A (eds) Proceedings of the 16th EAPR-Conference, 17–22 July 2005, Bilbao, Spain, pp 246–250Google Scholar
  33. Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T (2008) Novel somatic hybrids and their fertile BC1 progenies of potato (Solanum tuberosum L.) + S. tarnii, extremely resistant to potato virus Y and resistant to late blight. Theor Appl Genet 116:691–700CrossRefPubMedGoogle Scholar
  34. Tingey WM (1984) Glycoalkaloids as pest resistance factors. Am Potato J 61:157–167CrossRefGoogle Scholar
  35. Toppino L, Menella G, Rizza F, D’Alessandro A, Sihachakr D, Rotino GL (2008) ISSR and isozyme characterization of androgenetic dihaploids reveals tetrasomic inheritance in tetraploid somatic hybrids between Solanum melongena and Solanum aethiopicum Group Gilo. J Hered 99(3):304–315CrossRefPubMedGoogle Scholar
  36. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Freijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  37. Yang H, Sweetingham MW, Cowling WA, Smith PMC (2001) DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.). Mol Breed 7:203–209CrossRefGoogle Scholar
  38. Zlesak DC, Thill CA (2004) Foliar Resistance to Phytophthora infestans (Mont.) de Bary (US-8) in 13 Mexican and South American Solanum sp. having EBNs of 1, 2, and 4 and Implications for Breeding. Am J Potato Res 81:421–429CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ramona Thieme
    • 1
    Email author
  • Elena Rakosy-Tican
    • 2
  • Marion Nachtigall
    • 1
  • Jörg Schubert
    • 3
  • Thilo Hammann
    • 1
  • Olga Antonova
    • 5
  • Tatjana Gavrilenko
    • 5
  • Udo Heimbach
    • 4
  • Thomas Thieme
    • 6
  1. 1.Julius Kühn Institute, Federal Research Centre for Cultivated PlantsInstitute for Breeding Research on Agricultural CropsQuedlinburgGermany
  2. 2.Babeş-Bolyai UniversityCluj-NapocaRomania
  3. 3.Julius Kühn Institute, Federal Research Centre for Cultivated PlantsInstitute for Biosafety of Genetically Modified PlantsQuedlinburgGermany
  4. 4.Julius Kühn Institute, Federal Research Centre for Cultivated PlantsInstitute for Plant Protection in Field Crops and GrasslandBraunschweigGermany
  5. 5.NI Vavilov Institute of Plant IndustrySt. PetersburgRussia
  6. 6.BTL Bio-Test Lab GmbH SagerheideSagerheideGermany

Personalised recommendations