Advertisement

Plant Cell Reports

, Volume 28, Issue 8, pp 1279–1287 | Cite as

Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x Triticosecale Wittm.)

  • Iwona ŻurEmail author
  • Ewa Dubas
  • Elżbieta Golemiec
  • Magdalena Szechyńska-Hebda
  • Gabriela Gołębiowska
  • Maria Wędzony
Original Paper

Abstract

Isolated microspore cultures of two spring triticale (x Triticosecale Wittm.) cultivars were used to examine the effect of various stress treatments (either high—32°C or low—5°C temperature with or without nitrogen/carbohydrate starvation) applied to excised anthers on the effectiveness of microspore embryogenesis induction. To quantify the effects of pretreatment conditions, the activity of antioxidative enzymes (catalase, peroxidase and superoxide dismutase) together with respiration rate and heat emission were measured. It was observed that heat shock treatment applied as the only one stress factor increased the activity of antioxidative enzymes which suggests intensive generation of reactive oxygen species. Such pretreatment effectively triggered microspore reprogramming but drastically decreased microspore viability. After low temperature treatment, the activity of antioxidative enzymes was similar to the control subjected only with the stress originated from the transfer to in vitro culture conditions. This pretreatment decreased the number of microspores entering embryogenesis but sustained cell viability and this effect prevailed in the final estimation of microspore embryogenesis effectiveness. For both, low- and high-temperature treatments, interaction with starvation stress was beneficial increasing microspore viability (at 5°C) or efficiency of embryogenesis induction (at 32°C). The latter treatment significantly reduced cell metabolic activity. Physiological background of these effects seems to be different and some hypothetical explanations have been discussed. Received data indicate that in triticale, anther preculture conditions could generate oxidative stress and change the cell metabolic activity which could next be reflected in the cell viability and the efficiency of microspore embryogenesis.

Keywords

Antioxidative enzymes Metabolic activity Oxidative stress Microspore embryogenesis 

Abbreviations

ABA

Abscisic acid

CAT

Catalase

DH

Doubled haploids

DW

Dry weight

EDTA

Ethylenediaminetetraacetic acid

ELS

Embryo-like structures

H2O2

Hydrogen peroxide

KP

Potassium phosphate buffer

NAA

α-Naphthaleneacetic acid

PAR

Photosynthetic active radiation

PEX

Peroxidase

ROS

Reactive oxygen species

SOD

Superoxide dismutase

Notes

Acknowledgments

The research was supported by the project KBN23/E189/SPB/COST/P06/Dz585/2002-2005.

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:12–121Google Scholar
  2. Agache S, Bachelier B, De Buyser J, Henry Y, Snape J (1989) Genetic analysis of anther culture response in wheat using aneuploid, chromosome substitution and translocation lines. Theory Appl Genet 77:7–11CrossRefGoogle Scholar
  3. Barnabás B, Szakács É, Karsai I, Bedö Z (2001) In vitro andrognesis of wheat: from fundamentals to practical application. Euphytica 119:211–216CrossRefGoogle Scholar
  4. Blokhina O, Virolainen E, Fagerstedt V (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194PubMedCrossRefGoogle Scholar
  5. Bradford M (1976) A rapid and sensitive method for the quantisation of microprogram quantitates of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Castillo AM, Vallés MP, Cistué L (2000) Comparison of anther and isolated microspore cultures in barley. Effects of culture density and regeneration medium. Euphytica 113:1–8CrossRefGoogle Scholar
  7. Charmet G, Bernard S (1984) Diallel analysis of androgenic plant production in hexaploid triticale (× Triticosecale Wittm.). Theory Appl Genet 69:55–61Google Scholar
  8. Chen X-W, Cistué L, Muñoz-Amatraín M, Sanz M, Romagosa I, Castillo A-M, Valléz M-P (2007) Genetic markers for doubled haploid response in barley. Euphytica 158:287–294. doi: 10.1007/s10681-006-9310-5 CrossRefGoogle Scholar
  9. Criddle RS, Breidenbach RW, Rank DR, Hopkin MS, Hansen LD (1990) Simultaneous calorimetric and respirometric measurements on plant tissue. Thermochim Acta 172:213–221CrossRefGoogle Scholar
  10. Criddle RS, Fontana AJ, Rank DR, Paige D, Hansen LD, Breidenbach RW (1991) Simultaneous measurements of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. Anal Biochem 194:413–417PubMedCrossRefGoogle Scholar
  11. Cui K, Xing G, Liu X, Xing G, Wang Y (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16CrossRefGoogle Scholar
  12. Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795PubMedCrossRefGoogle Scholar
  13. Ekiz H, Konzak CF (1994) Preliminary diallel analysis of anther culture response in wheat (Triticum aestivum L.). Plant Breed 113:47–52CrossRefGoogle Scholar
  14. Eudes F, Amudsen E (2005) Isolated microspore cultures of Canadian 6× triticale cultivars. Plant Cell Tiss Org Cult 82:233–241. doi: 10.1007/s11240-005-0867-9 CrossRefGoogle Scholar
  15. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12(8):368–375PubMedCrossRefGoogle Scholar
  16. Gaillard A, Vergne P, Beckert M (1991) Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep 10:55–58CrossRefGoogle Scholar
  17. Gorbunova VJ, Kruglova NN, Abramov SN (2001) The induction of androgenesis in vitro in spring soft wheat. Balance of exogenus and endogenous phytohormones. Biol Bull 28(1):25–30CrossRefGoogle Scholar
  18. Hoekstra S, van Ziijderveld MH, Heidekamp F, van der Mark F (1993) Microspore culture of Hordeum vulgare L.: the influence of density and osmolality. Plant Cell Rep 12:661–665CrossRefGoogle Scholar
  19. Hosp J, Maraschin SF, Touraev A, Boutilier K (2007) Functional genomics of microspore embryogenesis. Euphytica 158:275–285. doi: 10.1007/s10681-006-9238-9 CrossRefGoogle Scholar
  20. Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Baillieul F, Clément C (2006) Plant defence mechanisms are triggered in the anther during the pre-treatment process. In: The international conference ‘Haploids in Higher Plants III’ Vienna, 12–15 February 2006, Book of Abstracts, pp 29Google Scholar
  21. Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Boutilier K, Baillieul F, Clément C (2009) Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta 229(2):393–402PubMedCrossRefGoogle Scholar
  22. Journet E, Bligny R, Douce R (1986) Biochemical changes during sucrose deprivation in higher plant cells. J Biol Chem 261:3193–3199PubMedGoogle Scholar
  23. Kim Y-H, Kim Y, Cho E, Kwak S, Kwon S, Bae J, Lee B, Meen B, Huh G-H (2004) Alternations in intracellular and extracellular activities of antioxidant enzymes during suspension culture of sweet potato. Phytochemistry 65:2471–2476. doi: 10.1016/j.phytochem.2004.08.001 PubMedCrossRefGoogle Scholar
  24. Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432CrossRefGoogle Scholar
  25. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477. doi: 10.1016/S1534-5807(04)00099-1 PubMedCrossRefGoogle Scholar
  26. Lück H (1962) Katalase, Peroxydase, Reduktasen, Saccharase, Xanthinoxydase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim/Bergstraße, pp 895–897Google Scholar
  27. Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferrie AMR, Krochko JE (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144:134–154. doi: 10.1104/pp.106.092932 PubMedCrossRefGoogle Scholar
  28. Maraschin SDF, Caspers M, Potokina E, Wülfert F, Graner A, Spaink HP, Wang M (2006) DNA array analysis of stress-induced gene expression in barley androgenesis. Physiol Plant 127(4):535–550CrossRefGoogle Scholar
  29. Maskow T, Lerchner J, Peitzsch M, Harms H, Wolf G (2006) Chip calorimetry for the monitoring of whole cell biotransformation. J Biotechnol 122:431–442. doi: 10.1016/j.jbiotec.2005.10.008 PubMedCrossRefGoogle Scholar
  30. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  31. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410. S1360-1385(02)02312-9Google Scholar
  32. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498. doi: 10.1016/j.tplants.2004.08.009 PubMedCrossRefGoogle Scholar
  33. Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111:1233–1241PubMedGoogle Scholar
  34. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002a) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53(372):1237–1247. doi: 10.1093/jexbot/53.372.1237 PubMedCrossRefGoogle Scholar
  35. Neill S, Desikan R, Hancock J (2002b) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395 S1369-5266(02)00282-0PubMedCrossRefGoogle Scholar
  36. Oleszczuk S, Sowa S, Zimny J (2004) Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (x Triticosecale Wittmack) cv. Bogo Plant Cell Rep 22:885–893. doi: 10.1007/s00299-004-0796-9 Google Scholar
  37. Pauk J, Puolimatka M, Tóth KL, Monostori T (2000) In vitro androgenesis of triticale in isolated microspore culture. Plant Cell Tissue Organ Cult 61:221–229CrossRefGoogle Scholar
  38. Ryőppy PH (1996) Haploidy in triticale. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 4. Kluwer, Dordrecht, pp 117–131Google Scholar
  39. Schumann G (1990) In vitro production of haploids in triticale. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13, Wheat. Springer, Berlin, pp 383–402Google Scholar
  40. Stokłosa A, Janeczko A, Skoczowski A, Kieć J (2006) Isothermal calorimetry as a tool for estimating resistance of wild oat (Avena fatua L) to aryloxyphenoxypropionate herbicides. Thermochim Acta 441:203–206. doi: 10.1016/j.tca.2005.09.009 CrossRefGoogle Scholar
  41. Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2(8):297–302CrossRefGoogle Scholar
  42. Touraev A, Tashpulatov A, Indrianto A, Barinova J, Katholnigg H, Akimcheva S, Ribarits A, Voronin V, Zhexsembekova M, Heberle-Bors E (2000) Fundamental aspects of microspore embryogenesis. In: Proceedings of the COST Action 824, ‘Biotechnological approaches for utilisation of gametic cells’ Bled, 1–5 July 2000, pp 205–214Google Scholar
  43. Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53(372):1227–1236. doi: 10.1093/jexbot/53.372.1227 PubMedCrossRefGoogle Scholar
  44. Zhuang JJ, Xu J (1983) Increasing differentiation frequencies in wheat pollen callus. In: Hu H, Vega MR (eds) Cell and tissue culture techniques for cereal crop improvement. Science Press, Beijing, p 431Google Scholar
  45. Żur I, Dubas E, Golemiec E, Szechyńska-Hebda M, Janowiak F, Wędzony M (2008) Factors important for effective androgenesis induction in isolated microspore culture of triticale (× Triticosecale Wittm.). Plant Cell Tissue Organ Cult 94(3):319–328. doi: 10.1007/s11240-008-9360-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Iwona Żur
    • 1
    Email author
  • Ewa Dubas
    • 1
  • Elżbieta Golemiec
    • 1
  • Magdalena Szechyńska-Hebda
    • 1
  • Gabriela Gołębiowska
    • 1
    • 2
  • Maria Wędzony
    • 1
    • 2
  1. 1.Institute of Plant PhysiologyPolish Academy of SciencesKrakówPoland
  2. 2.Pedagogical University of KrakówKrakówPoland

Personalised recommendations