Plant Cell Reports

, Volume 28, Issue 8, pp 1169–1177 | Cite as

Callus, shoot and hairy root formation in vitro as affected by the sensitivity to auxin and ethylene in tomato mutants

  • Joni Esrom Lima
  • Vagner Augusto Benedito
  • Antonio Figueira
  • Lázaro Eustáquio Pereira Peres
Original Paper


We analyzed the impact of ethylene and auxin disturbances on callus, shoots and Agrobacterium rhizogenes-induced hairy root formation in tomato (Solanum lycopersicum L.). The auxin low-sensitivity dgt mutation showed little hairy root initiation, whereas the ethylene low-sensitivity Nr mutation did not differ from the control Micro-Tom cultivar. Micro-Tom and dgt hairy roots containing auxin sensitivity/biosynthesis rol and aux genes formed prominent callus onto media supplemented with cytokinin. Under the same conditions, Nr hairy roots did not form callus. Double mutants combining Rg1, a mutation conferring elevated shoot formation capacity, with either dgt or Nr produced explants that formed shoots with little callus proliferation. The presence of rol + aux genes in Rg1 hairy roots prevented shoot formation. Taken together, the results suggest that although ethylene does not affect hairy root induction, as auxin does, it may be necessary for auxin-induced callus formation in tomato. Moreover, excess auxin prevents shoot formation in Rg1.


Agrobacterium Lycopersicon Regeneration Rg1 rol genes Solanum 





Regeneration locus 1




Never ripe


root loci


Root inductor plasmid


Glyceraldehyde-3-phosphate dehydrogenase



The following are acknowledged: FAPESP (grant 02/00329-8 and fellowship 03/03940-2) and CNPq (grant 475494/03-2 and fellowship 308075/03-0) for financial support.


  1. Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ (1998) The Never-ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato plants. Plant Physiol 177:841–849CrossRefGoogle Scholar
  2. Auer CA, Cohen JD, Laloue M, Cooke TJ (1992) Comparison of benzyladenine metabolism in two Petunia lines differing in shoot organogenesis. Plant Physiol 98:1035–1041PubMedCrossRefGoogle Scholar
  3. Baumann K, De Paolis A, Costantino P, Gualberti G (1999) The DNA biding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11:323–333PubMedCrossRefGoogle Scholar
  4. Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96:1761–1766PubMedCrossRefGoogle Scholar
  5. Boiten H, Azmi A, Dillen W, De Schepper S, Debergh P, Gerats T, Van Onckelen H, Prinsen H (2004) The Rg-1 encoded regeneration capacity of tomato is not related to an altered cytokinin homeostasis. New Phytol 161:761–771CrossRefGoogle Scholar
  6. Cardarelli M, Spanó L, Mariotti D, Mauro ML, Van Sluys MA, Costantino P (1987) The role of auxin in hairy root induction. Mol Gen Genet 208:457–463CrossRefGoogle Scholar
  7. Cary A, Uttamchandani SJ, Smets R, Van Onckelen HA, Howell SHH (2001) Arabidopsis mutants with increased organ regeneration in tissue culture are more competent to respond to hormonal signals. Planta 213:700–707PubMedCrossRefGoogle Scholar
  8. Centeno ML, Rodríguez A, Feito I, Fernández B (1996) Relationship between endogenous auxin and cytokinin levels and morphogenic responses in Actinidia deliciosa tissue cultures. Plant Cell Rep 16:58–62CrossRefGoogle Scholar
  9. Chatfield SP, Raizada MN (2008) Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. Plant Cell Rep 27:655–666PubMedCrossRefGoogle Scholar
  10. Chilton MD, Tepfer DA, Petit A, David C, Casse Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into genomes of the host plant root cells. Nature 295:432–434CrossRefGoogle Scholar
  11. Chriqui D, Guivarch A, Dewitte W, Prinsen E, van Onkelen H (1996) Rol genes and root initiation and development. Plant Soil 187:47–55CrossRefGoogle Scholar
  12. Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ (1999) Root formation in the ethylene-insensitive plants. Plant Physiol 121:53–59PubMedCrossRefGoogle Scholar
  13. Delbarre A, Muller P, Imhoff V, Barbier-Brygoo H, Maurel C, Leblanc N, Perrot-Rechenmann C, Guern J (1994) The rolB gene of Agrobacterium rhizogenes does not increase the auxin sensitivity of tobacco protoplasts by modifying the intracellular auxin concentration. Plant Physiol 105:563–569PubMedGoogle Scholar
  14. Faiss M, Strnad M, Redig P, Dolezal K, Hanus J, Van Onckelen H, Schmülling T (1996) Chemically induced expression of the rolC-encoded beta-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10:33–46CrossRefGoogle Scholar
  15. Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209CrossRefGoogle Scholar
  16. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  17. Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1555–1573PubMedCrossRefGoogle Scholar
  18. Hardtkea C, Dorceya E, Osmonta KS, Sibout R (2007) Phytohormone collaboration: zooming in on auxin–brassinosteroid interactions. Trend Cell Biol 17:485–492CrossRefGoogle Scholar
  19. Hicks GR, Rayle DL, Lomax TL (1989) The diageotropica mutant of tomato lacks high specific activity auxin binding sites. Science 245:52–54PubMedCrossRefGoogle Scholar
  20. Kepczynski J, McKersie D, Brown DCW (1992) Requirement of ethylene for growth of callus and somatic embryogenesis in Medicago sativa L. J Exp Bot 43:1199–1202CrossRefGoogle Scholar
  21. Klee HJ, Estelle M (1991) Molecular genetic approaches to plant hormone biology. Annu Rev Pant Physiol Plant Mol Biol 42:529–551CrossRefGoogle Scholar
  22. Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD (2000) A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol 122:85–98PubMedCrossRefGoogle Scholar
  23. Koornneef M, Bade J, Hanhart C, Horsman K, Schel J, Soppe W, Verkerk R, Zabel P (1993) Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant J 3:131–141CrossRefGoogle Scholar
  24. Koornneef M, Alonso-Blanco C, Peeters AJM (1997) Genetic approaches in plant physiology. New Phytol 137:1–8CrossRefGoogle Scholar
  25. Kumar PP, Lakshmanan P, Thorpe TA (1998) Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev Biol Plant 34:94–103CrossRefGoogle Scholar
  26. Lakshmanan P, Ng SK, Loh CS, Goh CJ (1997) Auxin, cytokinin and ethylene differentially regulate specific developmental states associated with shoot bud morphogenesis in leaf tissues of mangosteen (Garcinia mangostana L.) cultured in vitro. Plant Cell Physiol 38:59–64Google Scholar
  27. Lanahan MB, Yan H-C, Giovannoni JJ, Klee HJ (1994) The Never ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521–530PubMedCrossRefGoogle Scholar
  28. Lima JE, Carvalho RF, Neto AT, Figueira A, Peres LEP (2004) Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. Plant Sci 167:753–757CrossRefGoogle Scholar
  29. Martí E, Gisbert C, Bishop GJ, Dixon MS, Garcia-Martinez JL (2006) Genetic and physiological characterization of tomato cv. Micro-Tom. J Exp Bot 57:2037–2047PubMedCrossRefGoogle Scholar
  30. Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472CrossRefGoogle Scholar
  31. Moritz T, Schmülling T (1998) The gibberellin content of rolA transgenic tobacco plants is specifically altered. J Plant Physiol 153:774–776Google Scholar
  32. Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid level and auxin signaling in root growth. Nature 443:458–461PubMedCrossRefGoogle Scholar
  33. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  34. Oh K, Ivanchenko MG, White TJ, Lomax TL (2006) The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signaling. Planta 224:133–144PubMedCrossRefGoogle Scholar
  35. Paciorek T, Friml J (2006) Auxin signaling. J Cell Sci 119:1199–1202PubMedCrossRefGoogle Scholar
  36. Peres LEP, Kerbauy GB (1999) High cytokinin accumulation following root tip excision changes the endogenous auxin to cytokinin ratio during root-to-shoot conversion in Catasetum fimbriatum Lindl. (Orchidaceae). Plant Cell Rep 18:1002–1006CrossRefGoogle Scholar
  37. Peres LEP, Amar S, Kerbauy GB, Salatino A, Zaffari GR, Mercier H (1999) Effects of auxin, cytokinin and ethylene treatments on the endogenous ethylene and auxin-to-cytokinin ratio related to direct root tip conversion of Catasetum fimbriatum Lindl. (Orchidaceae) into buds. J Plant Physiol 155:551–555Google Scholar
  38. Peres LEP, Morgante PG, Vechi C, Kraus JE, Van Sluys M-A (2001) Shoot regeneration capacity from roots and transgenic hairy roots of different tomato cultivars and wild related species. Plant Cell Tissue Organ Cult 65:37–44CrossRefGoogle Scholar
  39. Petit A, Tempé J (1978) Isolation of Agrobacterium Ti-plasmid regulatory mutants. Mol Gen Genet 167:147–155CrossRefGoogle Scholar
  40. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRefGoogle Scholar
  41. Ricker AJ (1930) Studies on infections hairy roots of nursery apple trees. J Agric Res 41:438–446Google Scholar
  42. Sarul P, Vlahova M, Ivanova A, Atanassov A (1995) Direct shoot formation in spontaneously occurring root pseudonodules of alfalfa (Medicago sativa L.). In Vitro Cell Dev Biol 31:21–25CrossRefGoogle Scholar
  43. Scott JW, Harbaugh BK (1989) Micro-Tom, a miniature dwarf tomato. Florida Agricultural Sciences, University of Florida, Circular S-370:1–6Google Scholar
  44. Serrani JC, Sanjuan R, Ruiz-Rivero O, Fos M, Garcia-Martinez JL (2007) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257PubMedCrossRefGoogle Scholar
  45. Shen WH, Petit A, Guern J, Tempé J (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci USA 85:3417–3421PubMedCrossRefGoogle Scholar
  46. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131Google Scholar
  47. Stevens MA, Rick CM (1986) Genetic and breeding. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, pp 35–109Google Scholar
  48. Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2:61–64PubMedCrossRefGoogle Scholar
  49. Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 6:943–948Google Scholar
  50. Tieman DM, Ciardi JA, Taylor MG, Klee HJ (2001) Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26:47–58PubMedCrossRefGoogle Scholar
  51. Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440PubMedCrossRefGoogle Scholar
  52. Wang H, Jones B, Li ZG, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692PubMedCrossRefGoogle Scholar
  53. Wilkinson JQ, Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1995) An ethylene-inducible component of signal-transduction encoded by Never-ripe. Science 270:1807–1809PubMedCrossRefGoogle Scholar
  54. Yamada T, Palm CJ, Brooks B, Kosuge T (1985) Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad Sci USA 82:6522–6526PubMedCrossRefGoogle Scholar
  55. Yoshimatsu K, Shimomura K (1994) Plant regeneration on cultured root segments of Cephalis ipecacuanha A. Richard. Plant Cell Rep 14:98–101CrossRefGoogle Scholar
  56. Zsögön A, Lambais MR, Benedito VA, Figueira AVO, Peres LEP (2008) Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants. Sci Agric 65:259–267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Joni Esrom Lima
    • 2
    • 3
  • Vagner Augusto Benedito
    • 2
    • 4
  • Antonio Figueira
    • 2
  • Lázaro Eustáquio Pereira Peres
    • 1
  1. 1.Department of Biological Sciences (LCB), Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ)Universidade de São Paulo (USP)PiracicabaBrazil
  2. 2.Centro de Energia Nuclear na Agricultura (CENA)USPPiracicabaBrazil
  3. 3.Institut für PflanzenernährungUniversität HohenheimStuttgartGermany
  4. 4.Plant Biology DivisionSamuel Roberts Noble FoundationArdmoreUSA

Personalised recommendations