Plant Cell Reports

, Volume 28, Issue 5, pp 787–800 | Cite as

Sequence analysis and functional characterization of the promoter of the Picea glauca Cinnamyl Alcohol Dehydrogenase gene in transgenic white spruce plants

  • Frank Bedon
  • Caroline Levasseur
  • Jacqueline Grima-Pettenati
  • Armand Séguin
  • John MacKayEmail author
Genetic Transformation and Hybridization


The enzyme Cinnamyl Alcohol Dehydrogenase (CAD) catalyses the last step of lignin monomer synthesis, and is considered as a molecular marker of cell wall lignification in different plants species. Here, we report the isolation and analysis of 5′ flanking genomic DNA regions upstream to the CAD gene, from two conifers, i.e. white spruce (Picea glauca (Moench) Voss) and loblolly pine (Pinus taeda L.). Sequence comparisons with available CAD gene promoters from angiosperms highlighted the conservation of cis-elements matching MYB, WRKY and bHLH binding sites. Functional characterization of the P. glauca CAD promoter used P. glauca seedlings stably transformed with a DNA fragment of 1,163 base pairs (PgCAD) fused to the β-glucuronidase (GUS) gene. Histochemical observations of different vegetative organs of the transgenic trees showed that this sequence was sufficient to drive GUS expression in lignifying tissues, and more specifically in differentiating xylem cells. Quantitative RT-PCR experiments also indicated that the native CAD gene was preferentially expressed in differentiating xylem both in stems and roots. In addition, GUS expression driven by the PgCAD promoter was wound-inducible which was consistent with the accumulation of CAD mRNA in response to jasmonate application and mechanical wounding. The spruce CAD promoter represents a valuable tool for research and biotechnology applications related to xylem and wood.


Conifer Cinnamyl alcohol dehydrogenase (CAD) Lignin Vascular tissues Cis-regulatory elements Jasmonate Wounding 



We are grateful to Françoise Pelletier and Laurence Tremblay for excellent assistance in tissue culture and growth of the plants in greenhouse. We acknowledge Denis Lachance for helpful advice for the jasmonate application methods. This research was supported by funding from Genome Canada and Génome Québec to JM and AS for the ARBOREA project.

Supplementary material

299_2009_688_MOESM1_ESM.xls (78 kb)
Supplementary material 1 (XLS 78 kb)
299_2009_688_MOESM2_ESM.jpg (88 kb)
Supplementary material 2 (JPG 88 kb)


  1. Adomas A, Heller G, Li G, Olson Ã, Chu T, Osborne J, Craig D, van Zyl L, Wolfinger R, Sederoff R, Dean RA, Stenlid J, Finlay R, Asiegbu FO (2007) Transcript profiling of a conifer pathosystem: response of Pinus sylvestris root tissues to pathogen (Heterobasidion annosum) invasion. Tree Physiol 27:1441–1458PubMedGoogle Scholar
  2. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation lateral root initiation root apical dominance and root gravitropism. Ann Bot 97:883–893. doi: 10.1093/aob/mcl027 PubMedCrossRefGoogle Scholar
  3. Baghdady A, Blervacq A, Jouanin L, Grima-Pettenati J, Sivadon P, Hawkins S (2006) Eucalyptus gunnii CCR and CAD2 promoters are active in lignifying cells during primary and secondary xylem formation in Arabidopsis thaliana. Plant Physiol Biochem 44:674–683. doi: 10.1016/j.plaphy.2006.10.027 PubMedCrossRefGoogle Scholar
  4. Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inze D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in Poplar. Plant Physiol 112:1479–1490PubMedGoogle Scholar
  5. Bedon F, Grima Pettenati J, Mackay J (2007) Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biol 7:17. doi: 10.1186/1471-2229-7-17 PubMedCrossRefGoogle Scholar
  6. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938 PubMedCrossRefGoogle Scholar
  7. Boudet A, Hawkins S, Rochange S (2004) The polymorphism of the genes/enzymes involved in the last two reductive steps of monolignol synthesis: what is the functional significance? C R Biol 327:837–845. doi: 10.1016/j.crvi.2004.04.007 PubMedCrossRefGoogle Scholar
  8. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116CrossRefGoogle Scholar
  9. Côté C, Rutledge RG (2003) An improved MUG fluorescent assay for the determination of GUS activity within transgenic tissue of woody plants. Plant Cell Rep 21:619–624. doi: 10.1007/s00299-002-0543-z PubMedGoogle Scholar
  10. Diaz I, Vicente-Carbajosa J, Abraham Z, Martinez M, Isabel-La Moneda I, Carbonero P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J 29:453–464. doi: 10.1046/j.0960-7412.2001.01230.x PubMedCrossRefGoogle Scholar
  11. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Cur Opin Plant Biol 10:366–371. doi: 10.1016/j.pbi.2007.04.020 CrossRefGoogle Scholar
  12. Feuillet C, Lauvergeat V, Deswarte C, Pilate G, Boudet A, Grima-Pettenati J (1995) Tissue-and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants. Plant Mol Biol 27:651–667PubMedCrossRefGoogle Scholar
  13. Galliano H, Cabané M, Eckerskorn C, Lottspeich F, Sandermann H, Ernst D (1993) Molecular cloning sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L). Plant Mol Biol 23:145–156PubMedCrossRefGoogle Scholar
  14. Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2 a new transcriptional activator from Eucalyptus xylem regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567. doi: 10.1111/j.1365-313X.2005.02480.x PubMedCrossRefGoogle Scholar
  15. Grima-Pettenati J, Feuillet C, Goffner D, Borderies G, Boudet AM (1993) Molecular cloning and expression of a Eucalyptus gunnii cDNA clone encoding cinnamyl alcohol dehydrogenase. Plant Mol Biol 21:1085–1095PubMedCrossRefGoogle Scholar
  16. Haberer G, Mader MT, Kosarev P, Spannagl M, Yang L, Mayer KF (2006) Large-scale cis-element detection by analysis of correlated expression and sequence conservation between Arabidopsis and Brassica oleracea. Plant Physiol 142:1589–1602. doi: 10.1104/pp.106.085639 PubMedCrossRefGoogle Scholar
  17. Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB BZIP and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171. doi: 10.1007/s11103-004-6910-0 PubMedCrossRefGoogle Scholar
  18. Hawkins S, Samaj J, Lauvergeat V, Boudet A, Grima-Pettenati J (1997) Cinnamyl alcohol dehydrogenase: identification of new sites of promoter activity in transgenic poplar. Plant Physiol 113:321–325PubMedGoogle Scholar
  19. Hemerly AS, Ferreira P, a Engler J, Van Montagu M, Engler G, Inze D (1993) cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5:1711–1723PubMedCrossRefGoogle Scholar
  20. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucl Acids Res 27:297–300PubMedCrossRefGoogle Scholar
  21. Hose E, Clarkson D, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264PubMedCrossRefGoogle Scholar
  22. Isabel-LaMoneda I, Diaz I, Martinez M, Mena M, Carbonero P (2003) SAD: a new DOF protein from barley that activates transcription of a cathepsin B-like thiol protease gene in the aleurone of germinating seeds. Plant J 33:329–340. doi: 10.1046/j.1365-313X.2003.01628.x PubMedCrossRefGoogle Scholar
  23. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405CrossRefGoogle Scholar
  24. Kirst M, Johnson AF, Christie B, Ulrich E, Hubbard K, Staggs R, Paule C, Retzel E, Whetten R, Sederoff R (2003) Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L) with Arabidopsis thaliana. Proc Natl Acad Sci USA 100:7383–7388. doi: 10.1073/pnas.1132171100 PubMedCrossRefGoogle Scholar
  25. Klimaszewska K, Lachance D, Pelletier G, Lelu M, Séguin A (2001) Regeneration of transgenic Picea glauca, P. mariana and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 37:748–755CrossRefGoogle Scholar
  26. Klimaszewska K, Rutledge R, Séguin A (2004) Genetic transformation of conifers utilizing somatic embryogenesis. In: Peña L (ed) Methods in molecular biology. Humana Press, Totowa, pp 151–164Google Scholar
  27. Koutaniemi S, Warinowski T, Kärkönen A, Alatalo E, Fossdal C, Saranpää P, Laakso T, Fagerstedt K, Simola L, Paulin L, Rudd S, Teeri T (2007) Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65:311–328. doi: 10.1007/s11103-007-9220-5 PubMedCrossRefGoogle Scholar
  28. Lacombe E, Van Doorsselaere J, Boerjan W, Boudet AM, Grima-Pettenati J (2000) Characterization of cis-elements required for vascular expression of the Cinnamoyl CoA Reductase gene and for protein-DNA complex formation. Plant J 23:663–676. doi: 10.1046/j.1365-313x.2000.00838.x PubMedCrossRefGoogle Scholar
  29. Lange BM, Lapierre C, Sandermann H Jr (1995) Elicitor-induced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiol 108:1277–1287PubMedGoogle Scholar
  30. Lauvergeat V, Rech P, Jauneau A, Guez C, Coutos-Thevenot P, Grima-Pettenati J (2002) The vascular expression pattern directed by the Eucalyptus gunnii cinnamyl alcohol dehydrogenase EgCAD2 promoter is conserved among woody and herbaceous plant species. Plant Mol Biol 50:497–509. doi: 10.1023/A:1019817913604 PubMedCrossRefGoogle Scholar
  31. Legay S, Lacombe E, Goicoechea M, Brière C, Séguin A, Mackay J, Grima-Pettenati J (2007) Molecular characterization of EgMYB1 a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Sci 173:542–549. doi: 10.1016/j.plantsei.2007.08.007 CrossRefGoogle Scholar
  32. Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetic and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430. doi: 10.1146/annurev.arplant.57.032905.105252 PubMedCrossRefGoogle Scholar
  33. Li L, Osakabe Y, Joshi CP, Chiang VL (1999) Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine. Plant Mol Biol 40:555–565PubMedCrossRefGoogle Scholar
  34. Lynn DG, Chang M (1990) Phenolic signals in cohabitation: implications for plant development. Annu Rev Plant Physiol Plant Mol Biol 41:497–526CrossRefGoogle Scholar
  35. Ma S, Bohnert H (2007) Integration of Arabidopsis thaliana stress-related transcript profiles promoter structures and cell-specific expression. Gen Biol 8:R49. doi: 10.1186/gb-2007-8-4-r49 CrossRefGoogle Scholar
  36. MacKay JJ, Liu W, Whetten R, Sederoff RR, O’Malley DM (1995) Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance molecular characterization and evolution. Mol Gen Genet 247:537–545PubMedCrossRefGoogle Scholar
  37. MacKay JJ, O’Malley DM, Presnell T, Booker FL, Campbell MM, Whetten RW, Sederoff RR (1997) Inheritance gene expression and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc Natl Acad Sci USA 94:8255–8260PubMedCrossRefGoogle Scholar
  38. Moyle R, Moody J, Phillips L, Walter C, Wagner A (2002) Isolation and characterization of a Pinus radiata lignin biosynthesis-related O-methyltransferase promoter. Plant Cell Rep 20:1052–1060. doi: 10.1007/s00299-002-0457-9 CrossRefGoogle Scholar
  39. Nicole M, Zeneli G, Lavallée R, Rioux D, Bauce E, Morency M, Fenning TM, Séguin A (2006) White pine weevil (Pissodes strobi) biological performance is unaffected by the jasmonic acid or wound-induced defense response in Norway spruce (Picea abies). Tree Physiol 26:1377–1389PubMedGoogle Scholar
  40. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee S, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-Like transcription factor. Plant Physiol 135:2150–2161. doi: 10.1104/pp.104.041442 PubMedCrossRefGoogle Scholar
  41. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523PubMedCrossRefGoogle Scholar
  42. Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071PubMedCrossRefGoogle Scholar
  43. Rombauts S, Dehais P, Van Montagu M, Rouze P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucl Acids Res 27:295–296PubMedCrossRefGoogle Scholar
  44. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  45. Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1 a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521. doi: 10.1126/science.1065201 PubMedCrossRefGoogle Scholar
  46. Séguin A, Laible G, Leyva A, Dixon RA, Lamb CJ (1997) Characterization of a gene encoding a DNA-binding protein that interacts in vitro with vascular specific cis elements of the phenylalanine ammonia-lyase promoter. Plant Mol Biol 35:281–291PubMedCrossRefGoogle Scholar
  47. Sibout R, Eudes A, Pollet B, Goujon T, Mila I, Granier F, Séguin A, Lapierre C, Jouanin L (2003) Expression pattern of two paralogs encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis: isolation and characterization of the corresponding mutants. Plant Physiol 132:848–860. doi: 10.1104/pp.103.021048 PubMedCrossRefGoogle Scholar
  48. Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and-D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076. doi: 10.1105/tpc.105.030767 PubMedCrossRefGoogle Scholar
  49. Skirycz A, Jozefczuk S, Stobiecki M, Muth D, Zanor MI, Witt I, Mueller-Roeber B (2007) Transcription factor AtDOF4, 2 affects phenylpropanoid metabolism in Arabidopsis thaliana. New Phytol 175:425–438. doi: 10.1111/j.1469-8137.2007.02129.x PubMedCrossRefGoogle Scholar
  50. Teutonico RA, Dudley MW, Orr JD, Lynn DG, Binns AN (1991) Activity and accumulation of cell division-promoting phenolics in tobacco tissue cultures. Plant Physiol 97:288–297PubMedCrossRefGoogle Scholar
  51. Tiimonen H, Häggman H, Tsai C, Chiang V, Aronen T (2007) The seasonal activity and the effect of mechanical bending and wounding on the PtCOMT promoter in Betula pendula. Plant Cell Rep 26:1205–1214. doi: 10.1007/s00299-007-0331-x PubMedCrossRefGoogle Scholar
  52. Timell T (1986) Compression wood in gymnosperms. Springer, BerlinGoogle Scholar
  53. Topfer R, Maas C, Horicke-Grandpierre C, Schell J, Steinbiss HH (1993) Expression vectors for high-level gene expression in dicotyledonous and monocotyledonous plants. Methods Enzymol 217:67–78PubMedGoogle Scholar
  54. Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288CrossRefGoogle Scholar
  55. Wagner A, Walter C (2004) Promoters studies in conifers In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Kerala, India, pp 231–240Google Scholar
  56. Wasternack C (2007) Jasmonates: an update on biosynthesis signal transduction and action in plant stress response growth and development. Ann Bot 100:681–697. doi: 10.1093/aob/mcm079 PubMedCrossRefGoogle Scholar
  57. Yokoyama A, Yamashino T, Amano Y, Tajima Y, Imamura A, Sakakibara H, Mizuno T (2007) Type-B ARR transcription factors ARR10 and ARR12 are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana. Plant Cell Physiol 48:84–96. doi: 10.1093/pcp/pcl040 PubMedCrossRefGoogle Scholar
  58. Zhao H, Lu J, Lü S, Zhou Y, Wei J, Song Y, Wang T (2005) Isolation and functional characterization of a cinnamate 4-hydroxylase promoter from Populus tomentosa. Plant Sci 168:1157–1162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Frank Bedon
    • 1
    • 2
    • 4
  • Caroline Levasseur
    • 3
  • Jacqueline Grima-Pettenati
    • 2
  • Armand Séguin
    • 3
  • John MacKay
    • 1
    Email author
  1. 1.Centre d’Étude de la ForêtUniversité LavalQuebecCanada
  2. 2.UMR UPS/CNRS 5546, Pôle de Biotechnologies VégétalesCastanet TolosanFrance
  3. 3.Natural Resources Canada, Canadian Forest Service, Laurentian Forestry CentreQuebecCanada
  4. 4.UMR Biodiversité Gènes Communauté 1202, INRA, Equipe de GénétiqueCestas cedexFrance

Personalised recommendations