Advertisement

Plant Cell Reports

, 27:1423 | Cite as

A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops

  • Indra K. VasilEmail author
Review

Abstract

Plant biotechnology is founded on the principles of cellular totipotency and genetic transformation, which can be traced back to the Cell Theory of Matthias Jakob Schleiden and Theodor Schwann, and the discovery of genetic transformation in bacteria by Frederick Griffith, respectively. On the 25th anniversary of the genetic transformation of plants, this review provides a historical account of the evolution of the theoretical concepts and experimental strategies that led to the production and commercialization of biotech (transformed or transgenic) plants expressing many useful genes, and emphasizes the beneficial effects of plant biotechnology on food security, human health, the environment, and conservation of biodiversity. In so doing, it celebrates and pays tribute to the contributions of scores of scientists who laid the foundation of modern plant biotechnology by their bold and unconventional thinking and experimentation. It highlights also the many important lessons to be learnt from the fascinating history of plant biotechnology, the significance of history in science teaching and research, and warns against the danger of the growing trends of ignoring history and historical illiteracy.

Keywords

Biotech crops Cell Theory Genetic transformation History of science Plant biotechnology Plant regeneration Somatic embryogenesis Totipotency Transgenic crops 

References

  1. Amici GB (1824) Observations microscopiques sur diverses espèces de plantes. Ann Sci Nat Bot 2:41–70, 211–248Google Scholar
  2. Amici GB (1830) Note sur le mode d’action du pollen sur le stigmate. Extrait d’une lettre d’Amici à Mirbel. Ann Sci Nat Bot 21:329–332Google Scholar
  3. Amici GB (1844) Quatrieme reunion des naturalists italiens. Flora 1:359Google Scholar
  4. Amici GB (1847) Sur la fécondation des Orchidées. Ann Sci Nat Bot 7(8):193–205Google Scholar
  5. Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III. J Exp Med 79:137–158CrossRefGoogle Scholar
  6. Backs-Hüsemann D, Reinert J (1970) Embryobildung durch isolierte Einzellen aus Gewebekulturen von Daucus carota. Protoplasma 70:49–60CrossRefGoogle Scholar
  7. Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81:4776–4780PubMedCrossRefGoogle Scholar
  8. Bergmann L (1959) A new technique for isolating and cloning cells of higher plants. Nature 184:648–649CrossRefGoogle Scholar
  9. Bergmann L (1960) Growth and division of single cells of higher plants in vitro. J Gen Physiol 43:841–851PubMedCrossRefGoogle Scholar
  10. Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187CrossRefGoogle Scholar
  11. Bomhoff G, Klapwijk PM, Kester HCM, Schilperoort RA, Hernalsteens JP, Schell J (1976) Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens. Mol Gen Genet 145:177–181PubMedCrossRefGoogle Scholar
  12. Botti C, Vasil IK (1983) Ontogeny of somatic embryos of Pennisetum americanum. II. In cultured immature inflorescences. Can J Bot 62:1629–1635Google Scholar
  13. Boysen-Jensen P (1910) Über die Leitung des phototropischen Reizes in Avena–keimpflanzen. Ber Dtsch Bot Ges 28:118–120Google Scholar
  14. Braun AC (1947) Thermal studies on the factors responsible for tumor initiation in crown gall. Am J Bot 34:234–240CrossRefGoogle Scholar
  15. Braun AC (1958) A physiological basis for autonomous growth of the crown-gall tumor cell. Proc Natl Acad Sci USA 44:344–349PubMedCrossRefGoogle Scholar
  16. Braun AC (1982) A history of the crown gall problem. In: Kahl G, Schell JS (eds) Molecular biology of plant tumors. Academic Press, New York, pp 155–210Google Scholar
  17. Chilton M-D (2001) Agrobacterium. A memoir. Plant Physiol 125:9–14PubMedCrossRefGoogle Scholar
  18. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271PubMedCrossRefGoogle Scholar
  19. Chilton M-D, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77:4060–4064PubMedCrossRefGoogle Scholar
  20. Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:927–929CrossRefGoogle Scholar
  21. Cocking EC (2000) Plant protoplasts. In Vitro Cell Dev Biol Plant 36:77–82Google Scholar
  22. Conger BV, Hanning GE, Gray DJ, McDaniel JK (1983) Direct embryogenesis from mesophyll cells of orchard grass. Science 221:850–851PubMedCrossRefGoogle Scholar
  23. Constabel F, Vasil IK (eds) (1987) Cell culture and somatic cell genetics of plants. Cell culture in phytochemistry, vol 4. Academic Press, New YorkGoogle Scholar
  24. Constabel F, Vasil IK (eds) (1988) Cell culture and somatic cell genetics of plants. Phytochemicals in plant cell cultures, vol 5. Academic Press, New YorkGoogle Scholar
  25. Darwin C (1880) The power of movement in plants. John Murray, LondonGoogle Scholar
  26. Davey MR, Cocking EC, Freeman J, Pearce N, Tudor I (1980) Transformation of petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci Lett 18:307–313CrossRefGoogle Scholar
  27. De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3:1681–1689PubMedGoogle Scholar
  28. De Framond AJ, Barton KA, Chilton M-D (1983) Mini-Ti: a new vector strategy for plant genetic engineering. Biotechnology 1:262–269CrossRefGoogle Scholar
  29. De la Pena A, Lorz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into floral tillers. Nature 235:274–276CrossRefGoogle Scholar
  30. De Wet JMJ, De Wet AE, Brink DE, Hepburn AG, Woods JH (1986) Gametophyte transformation in maize (Zea mays, Gramineae). In: Mulcahy DL, Mulcahy GB, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer, New York, pp 59–64Google Scholar
  31. Doy CH, Gresshoff PM, Rolfe BG (1973) Biological and molecular evidence for the transgenosis of genes from bacteria to plant cells. Proc Natl Acad Sci USA 70:723–726PubMedCrossRefGoogle Scholar
  32. Fox JL (2006) Turning plants into protein factories. Nature Biotechnol 24:1191–1193CrossRefGoogle Scholar
  33. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807PubMedCrossRefGoogle Scholar
  34. Fromm M, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793PubMedCrossRefGoogle Scholar
  35. Gautheret RJ (1934) Culture du tissues cambial. C R Hebd Seances Acad Sc 198:2195–2196Google Scholar
  36. Gautheret RJ (1939) Sur la possibilité de realiser a culture indefinite des tissues de tubercules de carotte. C R Hebd Seances Acad Sc 208:118–120Google Scholar
  37. Gautheret RJ (1985) History of plant tissue and cell culture. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Cell growth, nutrition, cytodifferentiation, and cryopreservation, vol 2. Academic Press, New York, pp 1–59Google Scholar
  38. Giles KL (ed) (1983) Plant protoplasts. Int Rev Cytol, Supp 16. Academic Press, New YorkGoogle Scholar
  39. Gleba YY, Sytnik KM (1984) Protoplast fusion: genetic engineering in higher plants. Springer, HeidelbergGoogle Scholar
  40. Goldman A, Tempé J, Morel G (1968) Quelques particularités de diverses souches d’ Agrobacterium tumefaciens. C R Seances Soc Biol Ses Fil 162:623–631Google Scholar
  41. Grant JE, Pandey KK, Williams EG (1980) Pollen nuclei after ionizing radiation for egg transformation. N Z J Bot 18:339–341Google Scholar
  42. Graves A, Goldman S (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7:43–50CrossRefGoogle Scholar
  43. Griffith F (1928) The significance of pneumococcal types. J Hyg 27:113–119Google Scholar
  44. Grimsley N, Hohn B, Hohn T, Walden R (1986) ‘Agroinfection’, an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83:3282–3286PubMedCrossRefGoogle Scholar
  45. Guha-Mukherjee S (1999) The discovery of haploid production by anther culture. In Vitro Cell Dev Biol Plant 35:357–360Google Scholar
  46. Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212:97–98CrossRefGoogle Scholar
  47. Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber K Preuss Akad Wiss Wien. Math Naturwiss 111:69–92Google Scholar
  48. Haberlandt G (1913) Zur Physiologie der Zellteilung. Sitz Ber K. Preuss Akad Wiss 1913:318–345Google Scholar
  49. Haberlandt G (1921) Wundhormone als Erreger von Zellteilungen. Beitr Allg Bot 2:1–53Google Scholar
  50. Halperin W (1966) Single cells, coconut milk, and embryogenesis in vitro. Science 153:1287–1288PubMedCrossRefGoogle Scholar
  51. Halperin W (1970) Embryos from somatic plant cells. Symp Int Soc Cell Biol 9:169–191Google Scholar
  52. Hamilton RH, Chopan MN (1975) Transfer of the tumor inducing factor in Agrobacterium tumefaciens. Biochem Biophys Res Comm 63:349–354PubMedCrossRefGoogle Scholar
  53. Hamilton RH, Fall MZ (1971) The loss of tumor-inducing ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia 27:229–230PubMedCrossRefGoogle Scholar
  54. Hauptmann RM, Vasil V, Ozias-Akins P, Tabaizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86:602–606PubMedGoogle Scholar
  55. Heller R (1953) Récherches sur la nutrition minerale des tissues végétaux cultives in vitro. Ann Sci Nat Bot Biol Veg 14:1–223Google Scholar
  56. Hernalsteens J-P, Thia-Toong L, Schell J, Van Montagu M (1984) An Agrobacterium transformed cell culture from the monocot Asparagus officinalis. EMBO J 3:3039–3041PubMedGoogle Scholar
  57. Herrera-Estrella L, De Block M, Messens E, Hernalsteens JP, Van Montagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–995PubMedGoogle Scholar
  58. Hess D (1969a) Versuche zur Transformation an höheren Pflanzen: Induktion und konstante Weitergabe der Anthocyansynthese bei Petunia hybrida. Z Pflanzenphysiol 60:348–358Google Scholar
  59. Hess D (1969b) Versuche zur Transformation an höheren Pflanzen: Wiederholung der Anthocyanin-Induktion bei Petunia und erste Charakterisierung des transformierenden Prinzips. Z Pflanzenphysiol 61:286–298Google Scholar
  60. Hess D (1978) Genetic effects in Petunia hybrida induced by pollination with pollen treated with lac transducing phages. Z Pflanzenphysiol 90:119–132Google Scholar
  61. Hess D (1979) Genetic effects in Petunia hybrida induced by pollination with pollen treated with gal transducing phages. Z Pflanzenphysiol 93:429–436Google Scholar
  62. Hess D (1980) Investigations on the intra- and interspecific transfer of anthocyanin genes using pollen as vectors. Z Pflanzenphysiol 98:321–337Google Scholar
  63. Hess D, Dressler K (1984) Bacterial transferase activity expressed in Petunia progenies. J Plant Physiol 116:261–272Google Scholar
  64. Hess D, Scheinder G, Lorz H, Blaich G (1976) Investigations on the tumor induction in Nicotiana glauca by pollen transfer of DNA isolated from Nicotiana langsdorfii. Z Pflanzenphysiol 77:247–254Google Scholar
  65. Hess D, Dressler K, Nimmrichter R (1990) Transformation experiments by pipetting Agrobacterium into spikelets of wheat (Triticum aestivum L.). Plant Sci 72:233–244CrossRefGoogle Scholar
  66. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  67. Hildebrandt AC, Riker AJ (1949) The influence of various carbon compounds on the growth of marigold, Paris-daisy, periwinkle, sunflower and tobacco tissue in vitro. Am J Bot 36:74–85PubMedCrossRefGoogle Scholar
  68. Hildebrandt AC, Riker AJ (1953) Influence of concentrations of sugars and polysaccharides on callus tissue grown in vitro. Am J Bot 40:66–76CrossRefGoogle Scholar
  69. Hildebrandt AC, Riker AJ, Duggar BM (1946) The influence of the composition of the medium on growth in vitro of excised tobacco and sunflower tissue cultures. Am J Bot 33:591–597CrossRefGoogle Scholar
  70. Ho J-W, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L.). I. The morphology and physiology of callus formation and ontogeny of somatic embryos. Protoplasma 118:169–180CrossRefGoogle Scholar
  71. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180CrossRefGoogle Scholar
  72. Hofmeister W (1849) Die Entstehung des Embryo des Phanerogamen. LeipzigGoogle Scholar
  73. Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA (1984) Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311:763–764CrossRefGoogle Scholar
  74. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Hoffmann N (1984) Inheritance of functional genes in plants. Science 223:496–498PubMedCrossRefGoogle Scholar
  75. Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method of transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  76. Jablonski JR, Skoog F (1954) Cell enlargement and cell division in excised tobacco pith tissue. Physiol Plant 7:16–24CrossRefGoogle Scholar
  77. James C (2007) Global status of commercialized biotech/GM crops: 2007. ISAAA Brief 37Google Scholar
  78. Jinks JL, Caligari PDS, Ingram NR (1981) Gene transfer in Nicotiana rustica using irradiated pollen. Nature 291:586–588CrossRefGoogle Scholar
  79. Jones TJ, Rost TL (1989) The developmental anatomy and ultrastructure of somatic embryos from rice (Oryza sativa L) scutellum epithelial cells. Bot Gaz 150:41–49CrossRefGoogle Scholar
  80. Jones LE, Hildebrandt AC, Riker AJ (1960) Growth of somatic tobacco cells in microculture. Am J Bot 47:468–475CrossRefGoogle Scholar
  81. Kahl G, Schell JS (eds) (1982) Molecular biology of plant tumors. Academic Press, New YorkGoogle Scholar
  82. Kartha KK (1984) Elimination of viruses. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Laboratory procedures and their applications, vol 1. Academic Press, New York, pp 577–585Google Scholar
  83. Kerr (1969) Transfer of virulence between isolates of Agrobacterium. Nature 223:1175–1176Google Scholar
  84. Kerr A (1971) Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter. Physiol Plant Path 1:241–246CrossRefGoogle Scholar
  85. Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73CrossRefGoogle Scholar
  86. Knop W (1865) Quantitative Untersuchungen über den Ernährungsprozess der Pflanzen. Landwirtsch Vers Stn 7:93–107Google Scholar
  87. Kögl F, Kostermans DGFR (1934) Heteroauxin als Stoff-wechselproduckt niederer pflanzlicher Organismen Isolierung aus Hefe, XIII. Z Physiol Chem 228:113–121Google Scholar
  88. Kögl F, Haagen-Smit AJ, Erxleben H (1934) Über ein neues auxin (“Heteroauxin”) aus Harn, XI. Z Physiol Chem 228:90–103Google Scholar
  89. Komari T, Kubo T (1999) Methods of genetic transformation: Agrobacterium tumefaciens. In: Vasil IK (ed) Advances in cellular and molecular biology of plants. Molecular improvement of cereal crops, vol 5. Kluwer, Dordrecht, pp 43–82Google Scholar
  90. Konar RN, Nataraja K (1965a) Production of embryos on the stem of Ranunculus sceleratus L. Experientia 21:395CrossRefGoogle Scholar
  91. Konar RN, Nataraja K (1965b) Experimental studies in Ranunculus sceleratus L. Development of embryos from stem explants. Phytomorphology 15:132–137Google Scholar
  92. Kotte W (1922) Kulturversuche mit isolierten Wurzelspitzen. Beitr Allg Bot 2:413–443Google Scholar
  93. Krikorian AD, Berquam DL (1969) Plant cell and tissue culture: the role of Haberlandt. Bot Rev 35:59–88CrossRefGoogle Scholar
  94. Krikorian AD, Simola LK (1999) Totipotency, somatic embryogenesis, and Harry Waris (1893–1973). Physiol Plant 105:348–355CrossRefGoogle Scholar
  95. Laimer M, Rücker W (eds) (2002) Plant tissue culture: 100 years since Gottlieb Haberlandt. Springer, ViennaGoogle Scholar
  96. Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214CrossRefGoogle Scholar
  97. Ledoux L, Huart R (1969) Fate of exongenous bacterial deoxyribonucleic acid in barley seedling. J Mol Biol 43:243–248PubMedCrossRefGoogle Scholar
  98. Lu C, Vasil IK (1982) Somatic embryogenesis and plant regeneration from tissue cultures of Panicum maximum. Amer J Bot 69:77–81CrossRefGoogle Scholar
  99. Luo Z, Wu R (1988) A simple method for the transformation of rice via the pollen tube pathway. Plant Mol Biol Rep 6:165–174CrossRefGoogle Scholar
  100. Ma J, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines: current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599PubMedCrossRefGoogle Scholar
  101. Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129–131CrossRefGoogle Scholar
  102. Menagé A, Morel G (1964) Sur la presence d’octopine dans les tissue de crown-gall. C R Acad Sci Paris 259:4795–4796PubMedGoogle Scholar
  103. Miller CO, Skoog F, Von Saltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392CrossRefGoogle Scholar
  104. Miller CO, Skoog F, Okumura FS, von Saltza M, Strong FW (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78:1375–1380CrossRefGoogle Scholar
  105. Molliard M (1921) Sur le développement des plantules fragmentées. C R Soc Biol (Paris) 84:770–772Google Scholar
  106. Morel G, Martin C (1952) Guérison de dahlias atteints d’une maladie á virus. C R Hebd Seances Acad Sci 235:1324–1325PubMedGoogle Scholar
  107. Morel G, Martin C (1955) Guérison de pommes de terre atteintes de maladies á virus. C R Seances Acad Agric Fr 41:472–475Google Scholar
  108. Morel GM, Goldmann A, Petit A, Tempé J (1969) Evidence for the transmission of a permanent information from A. tumefaciens to the plant cell during tumoral formation. In: Proc 11th int bot cong, Abs 151Google Scholar
  109. Muir WH, Hildebrandt AC, Riker AJ (1954) Plant tissue cultures produced from isolated single cells. Science 119:877–878CrossRefGoogle Scholar
  110. Muir WH, Hildebrandt AC, Riker AJ (1958) The preparation, isolation, and growth in culture of single cells from higher plants. Am J Bot 45:589–597CrossRefGoogle Scholar
  111. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  112. Murphy DJ (2007) Improving containment strategies in biopharming. Plant Biotech J 5:555–569CrossRefGoogle Scholar
  113. Nagata T, Takebe I (1970) Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92:301–308CrossRefGoogle Scholar
  114. Nawaschin SG (1898) Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. Bull Acad Imp des Sci St Peterburg 9:377–382Google Scholar
  115. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87PubMedCrossRefGoogle Scholar
  116. Nobécourt P (1939) Sur la pérennité et l’augmentation de volume des cultures de tissues végétaux. C R Seances Soc Biol Ses Fil 130:1270–1271Google Scholar
  117. Ohta Y (1986) High efficiency genetic transformation of maize by a mixture of pollen and exongenous DNA. Proc Nat Acad Sci USA 83:715–719PubMedCrossRefGoogle Scholar
  118. Ozias-Akins P, Vasil IK (1985) Nutrition of plant tissue cultures. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Cell growth, nutrition, cytodifferentiation and cryopreservation, vol 2. Academic Press, New York, pp 129–147Google Scholar
  119. Pandey KK (1975) Sexual transfer of specific genes without gametic fusion. Nature 256:310–313PubMedCrossRefGoogle Scholar
  120. Pandey KK (1977) Mentor pollen: possible role of wall-held pollen growth promoting substances in overcoming intra- and interspecific incompatibility. Genetica 47:219–229CrossRefGoogle Scholar
  121. Pandey KK (1983) Evidence for gene transfer by the use of sublethally irradiated pollen in Zea mays and theory of occurrence by chromosome repair through somatic recombination and gene conversion. Mol Gen Genet 191:358–365CrossRefGoogle Scholar
  122. Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3:2717–2722PubMedGoogle Scholar
  123. Petit A, Delhaye S, Tempé J, Morel G (1970) Recherches sur le guanidines des tissues de crown-gall. Mise en évidence d’une relation biochimique spécifique entre les souches d’ Agrobacterium tumefaciens et les tumeurs qu’elles induisent. Physiol Veg 8:205–213Google Scholar
  124. Potrykus I (1990) Gene transfer to cereals: as assessment. Biotechnology 8:535–542CrossRefGoogle Scholar
  125. Potrykus I (2001) The ‘Golden Rice’ tale. In Vitro Cell Dev Biol Plant 37:93–100Google Scholar
  126. Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to a graminaceous monocot. Mol Gen Genet 199:183–188CrossRefGoogle Scholar
  127. Power JB, Cummins SE, Cocking EC (1970) Fusion of isolated protoplasts. Nature 223:1016–1018CrossRefGoogle Scholar
  128. Raghavan V (1986) Embryogenesis in angiosperms. Cambridge University Press, CambridgeGoogle Scholar
  129. Ream W (1989) Agrobacterium tumefaciencs and interkingdom genetic exchange. Annu Rev Phytopathol 27:583–618CrossRefGoogle Scholar
  130. Reinert J (1958a) Untersüchungen über die Morphogenese an Gewebekulturen. Ber Deutsch Bot Ges 71:15Google Scholar
  131. Reinert J (1958b) Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. Naturwiss 45:344–345CrossRefGoogle Scholar
  132. Reinert J (1959) Über die Kontrolle der Morphogenese und die Induktion von Adventivembryonen an Gewebekulturen aus Karotten. Planta 53:318–333CrossRefGoogle Scholar
  133. Reinert J (1963) Growth of single cells from higher plants on synthetic media. Nature 200:90–91CrossRefGoogle Scholar
  134. Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207PubMedCrossRefGoogle Scholar
  135. Robbins WJ (1922) Cultivation of excised root tips and stem tips under sterile conditions. Bot Gaz (Chicago) 73:376–390CrossRefGoogle Scholar
  136. Routier JB, Nickell LG (1956) Cultivation of plant tissue. US patent 2,747,334Google Scholar
  137. Sanford JC (2000) The development of the biolistic process. In Vitro Cell Dev Biol Plant 36:303–308CrossRefGoogle Scholar
  138. Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol 5:27–37CrossRefGoogle Scholar
  139. Schacht H (1850) Entwicklungsgeschichte der Pflanzenembryo. AmsterdamGoogle Scholar
  140. Schleiden MJ (1837) Einige Blicke aus die Entwicklungsgeschichte des vegetablischen Organismus bein den Phanerogamen. Arch Bwl Naturgeschchte III 1:289–320Google Scholar
  141. Schleiden MJ (1838) Beiträge zur Phytogenesis. Arch Anat Physiol Wiss Med (J Müller) pp 137–176Google Scholar
  142. Schleiden MJ (1845) Über Amicis letzten Beitrag zur Lehre von der Befruchtung der Pflanzen. Flora 593–600Google Scholar
  143. Schröder G, Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of Ti-plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391PubMedCrossRefGoogle Scholar
  144. Schwann T (1839) Mikroscopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstum des Thiere und Pflanzen. W Engelmann: Leipzig No 176Google Scholar
  145. Shillito R (1999) Methods of genetic transformation: electroporation and polyethylene glycol treatment. In: Vasil IK (ed) Advances in cellular and molecular biology of plants. Molecular improvement of cereal crops, vol 5. Kluwer, Dordrecht, pp 9–20Google Scholar
  146. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131Google Scholar
  147. Skoog F, Tsui C (1948) Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am J Bot 35:782–787CrossRefGoogle Scholar
  148. Skoog F, Tsui C (1951) Growth substances and the formation of buds in plant tissues. In: Skoog F (ed) Plant growth substances. University of Wisconsin Press, Madison, pp 263–285Google Scholar
  149. Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25:671–673PubMedCrossRefGoogle Scholar
  150. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–518PubMedCrossRefGoogle Scholar
  151. Staba EJ (1980) Plant tissue culture as a source of biochemicals. CRC Press, Boca RatonGoogle Scholar
  152. Steward FC, Pollard JK (1958) C14-proline and hydroxyproline in the protein metabolism of plants: an episode in the relation of metabolism to cell growth and morphogenesis. Nature 82:828–832CrossRefGoogle Scholar
  153. Steward FC, Mapes MO, Smith J (1958a) Growth and organized development of cultured cells. I. Growth and division in freely suspended cells. Am J Bot 45:693–703CrossRefGoogle Scholar
  154. Steward FC, Mapes MO, Mears K (1958b) Growth and organized development of cultured cells. II Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708CrossRefGoogle Scholar
  155. Strasberger E (1884) Neue Untersuchungen über den Befruchtungsvorgang bein den Phanerogamen. JenaGoogle Scholar
  156. Takebe I, Otsuki Y, Aoki S (1968) Isolation of tobacco mesophyll cells in intact and active state. Plant Cell Physiol 9:115–124Google Scholar
  157. Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwiss 58:318–320CrossRefGoogle Scholar
  158. Thimann KV (1935) On the plant hormone produced by Rhizopus suinus. J Biol Chem 109:279–291Google Scholar
  159. Thomashow MF, Hugly S, Buchholz WG, Thomashow LS (1986) Molecular basis for the auxin-independent phenotype of crown gall tumor tissues. Science 231:616–618PubMedCrossRefGoogle Scholar
  160. Thorpe TA (ed) (1995) In vitro embryogenesis in plants. Kluwer, DordrechtGoogle Scholar
  161. Trelease S, Trelease HM (1933) Physiologically balanced culture solutions with stable hydrogen ion concentration. Science 78:438–439PubMedCrossRefGoogle Scholar
  162. Tulecke W, Nickell LG (1959) Production of large amounts of plant tissue by submerged culture. Science 130:863–864PubMedCrossRefGoogle Scholar
  163. Tzfira T, Citovsky V (eds) (2008) Agrobacterium: from biology to biotechnology. Springer, New YorkGoogle Scholar
  164. Uspenski EE, Uspenskaia WJ (1925) Reinkultur und ungeschlechtliche Fortpflanzung der Volvox minor und Volvox globator in einer synthetischen Nährlösung. Z Bot 17:273–308Google Scholar
  165. Van Haute E, Joos H, Maes M, Warren G, Van Montagu M, Schell J (1983) Integeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J 2:411–417PubMedGoogle Scholar
  166. Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacteium tumefaciens essential for crown gall-inducing ability. Nature 252:169–170PubMedCrossRefGoogle Scholar
  167. Van Larebeke N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Hernalsteens JP, Van Montagu M (1975) Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature 255:742–743PubMedCrossRefGoogle Scholar
  168. Van Overbeek J, Conklin ME, Blakeslee AF (1941) Factors in coconut milk essential for growth and development of very young Datura embryos. Science 94:350–351CrossRefGoogle Scholar
  169. Vasil IK (1959) Nucleic acids and the survival of excised anthers in vitro. Science 129:1487–1488PubMedCrossRefGoogle Scholar
  170. Vasil IK (1976) The progress, problems and prospects of plant protoplast research. Adv Agron 28:119–160CrossRefGoogle Scholar
  171. Vasil IK (ed) (1984) Cell culture and somatic cell genetics of plants. Laboratory procedures and their applications, vol 1. Academic Press, New YorkGoogle Scholar
  172. Vasil IK (ed) (1999) Advances in cellular and molecular biology of plants. Molecular improvement of cereal crops, vol 5. Kluwer, DordrechtGoogle Scholar
  173. Vasil IK (2002) The wanderings of a botanist. In Vitro Cell Dev Biol Plant 38:383–395CrossRefGoogle Scholar
  174. Vasil IK (2003a) The science and politics of plant biotechnology—a personal perspective. Nat Biotechnol 21:849–851PubMedCrossRefGoogle Scholar
  175. Vasil IK (ed) (2003b) Plant biotechnology 2002 and beyond. Kluwer, DordrechtGoogle Scholar
  176. Vasil IK (2005) The story of transgenic cereals: the challenge, the debate, and the solution—a historical perspective. In Vitro Cell Dev Biol Plant 41:577–583CrossRefGoogle Scholar
  177. Vasil IK (2007) Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Rep 26:1133–1154PubMedCrossRefGoogle Scholar
  178. Vasil V, Hildebrandt AC (1965a) Growth and tissue formation from single, isolated tobacco cells in microculture. Science 147:1454–1455PubMedCrossRefGoogle Scholar
  179. Vasil V, Hildebrandt AC (1965b) Differentiation of tobacco plants from single, isolated cells in microcultures. Science 150:889–892PubMedCrossRefGoogle Scholar
  180. Vasil IK, Hildebrandt AC (1966a) Variations of morphogenetic behavior in plant tissue cultures. I. Cichorium endivia. Am J Bot 53:860–869CrossRefGoogle Scholar
  181. Vasil IK, Hildebrandt AC (1966b) Variations of morphogenetic behavior in plant tissue cultures. Petroselinum hortense. Am J Bot 59:869–874CrossRefGoogle Scholar
  182. Vasil IK, Hildebrandt AC (1966c) Growth and chlorophyll production in plant callus tissues grown in vitro. Planta 68:69–72CrossRefGoogle Scholar
  183. Vasil V, Hildebrandt AC (1967) Further studies on the growth and differentiation of single, isolated cells of tobacco in vitro. Planta 75:139–151CrossRefGoogle Scholar
  184. Vasil IK, Thorpe TA (eds) (1994) Plant cell and tissue culture. Kluwer, DordrechtGoogle Scholar
  185. Vasil IK, Vasil V (1972) Totipotency and embryogenesis in plant cell and tissue cultures. In Vitro 8:117–127PubMedGoogle Scholar
  186. Vasil V, Vasil IK (1980) Isolation and culture of cereal protoplasts. II. Embryogenesis and plantlet formation from protoplasts of Pennisetum americanum. Theor Appl Genet 56:97–99CrossRefGoogle Scholar
  187. Vasil V, Vasil IK (1982) The ontogeny of somatic embryos of Pennisetum americanum (L.) K. Schum.: in cultured immature embryos. Bot Gaz 143:454–465CrossRefGoogle Scholar
  188. Vasil IK, Vasil V (1992) Advances in cereal protoplast research. Physiol Plant 85:279–283CrossRefGoogle Scholar
  189. Vasil V, Lu C, Vasil IK (1985) Histology of somatic embryogenesis in cultured embryos of maize (Zea mays L.). Protoplasma 127:1–8CrossRefGoogle Scholar
  190. Virchow R (1858) Die Cellullarpathologie im ihrer Begrüngung und physiologische und pathologische Gewebelehre. A Hirschwald, BerlinGoogle Scholar
  191. Vöchting H (1878) Über Oganbildung im Pflanzenreich. Max Cohen, BonnGoogle Scholar
  192. Waris H (1957) A striking morphogenetic effect of amino acid in seed plant. Suom Kemistil 30B:121Google Scholar
  193. Waris H (1959) Neomorphosis in seed plants induced by amino acids. I. Oenanthe aquatica. Physiol Plant 15:736–752CrossRefGoogle Scholar
  194. Went FW (1928) Wuchstoff und Wachstum. Rec Trav Bot Neerl 25:1–116Google Scholar
  195. White PR (1932) Plant tissue cultures: a preliminary report of results obtained in the culturing of certain plant meristems. Arch Exp Zellforsch Besonders Gewebezücht 12:602–620Google Scholar
  196. White PR (1934a) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600PubMedGoogle Scholar
  197. White PR (1934b) Multiplication of the viruses of tobacco and Aucuba mosaics in growing excised tomato root tips. Phytopathology 24:1003–1011Google Scholar
  198. White PR (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 26:59–64CrossRefGoogle Scholar
  199. White PR (1943) A handbook of plant tissue culture. Jacques Cattell Press, TempeGoogle Scholar
  200. White PR (1963) The cultivation of animal and plant cells, 2nd edn. The Ronald Press, New YorkGoogle Scholar
  201. White PR, Braun AC (1942) A cancerous neoplasm of plants. Autonomous bacteria-free crown-gall tissue. Proc Am Phil Soc 86:467–469Google Scholar
  202. White PR, Grove AR (eds) (1965) Plant tissue culture. McCutchan, Berkeley, CaliforniaGoogle Scholar
  203. Willmitzer L, de Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287:359–361CrossRefGoogle Scholar
  204. Xu Z, Li J, Xue Y, Yang W (eds) (2007) Biotechnology and sustainable agriculture 2006 and beyond. Springer, DordrechtGoogle Scholar
  205. Zaenen I, Van Larebeke N, Teuchy H, Van Montagu M, Schell J (1974) Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86:109–127PubMedCrossRefGoogle Scholar
  206. Zhao T, Zhao S, Chen H, Zhao Q, Hu Z, Hou B, Xia G (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199–1204PubMedCrossRefGoogle Scholar
  207. Zilberstein A, Schuster S, Flaishman M, Pnini-Cohen S, Koncz C, Mass C, Schell J, Eyal L (1994) Stable transformation of spring wheat cultivars. In: Fourth international congress of plant molecular biology, Amsterdam (Abstract 2013)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations