Plant Cell Reports

, Volume 27, Issue 6, pp 1093–1101 | Cite as

Genetic control of somatic embryogenesis induction in Eucalyptus globulus Labill.

  • G. Pinto
  • Y. -S. Park
  • L. Neves
  • C. Araújo
  • C. Santos
Genetics and Genomics

Abstract

A reproducible protocol for somatic embryogenesis (SE) induction in Eucalyptus globulus from mature zygotic embryos is available since 2002. However, for the use of SE in tree breeding programs, the frequency of SE initiation needs to be improved and controlled, and this was investigated in 13 open-pollinated (OP) families over three consecutive years. A diallel mating design with five parent trees was used to study genetic control of SE induction. Results showed that SE induction varies across E. globulus families and over the years of seed production tested. Somatic embryogenesis was initiated on explants from 84% of the OP families tested in 2002 and 100% of the families tested in 2003 and 2004. The year 2003 gave best results for percentage of induction and total number of somatic embryos produced. Results concerning genetic control showed that SE induction is under the control of additive genetic effects, as 22.0% of variation in SE initiation was due to general combining ability (GCA) effect, whereas 6.4% was due to maternal effects. Neither specific combining ability (SCA) nor reciprocal effects were significant.

Keywords

Control pollination Eucalyptus globulus Genetic control Primary somatic embryos Somatic embryogenesis 

Abbreviations

CP

Control-pollinated

GCA

General combining ability

Mat

Maternal

MS

Murashige and Skoog medium

MSWH

MS medium without growth regulators

MVF

Multivarietal forestry

NAA

α-Naphthalene acetic acid

OP

Open-pollinated

Rec

Reciprocals

SCA

Specific combining ability

SE

Somatic embryogenesis

Notes

Acknowledgments

The authors thank Celbi for providing the material used in this study and for supporting part of the project. Thanks are also due to Armando Costa for technical assistance. The authors gratefully acknowledge Atlantic Forestry Centre, Canadian Forest Service, Natural Resources Canada (NRCan), in particular Jan Bonga and Ian MacEacheron for helpful suggestions. FCT supported the fellowship of Glória Pinto (FCT/SFRH/BPD/26434/2006) and her training period in Canada.

References

  1. Aitken-Christie J (2001) Somatic embryogenesis for large-scale clonal testing and propagation of elite material. In: Proceedings of the international conference on wood, breeding, biotechnology and industrial expectations, Bordeaux, France, p 9Google Scholar
  2. Anderson JV, Chao WS, Horvath DP (2001) A current review on the regulation of dormancy in vegetative buds. Weed Sci 49:581–589CrossRefGoogle Scholar
  3. Basra AS (1995) Seed quality: basic mechanism and agriculture implications. Haworth Press, New YorkGoogle Scholar
  4. Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20:810–817CrossRefGoogle Scholar
  5. Chengalrayan K, Mhaske VB, Hazra S (1998) Genotypic control of peanut somatic embryogenesis. Plant Cell Rep 17:522–525CrossRefGoogle Scholar
  6. Cotterill PP, Araújo C, Lencart P (2000) Project 3D: Celbi’s advanced-generation Eucalyptus globulus improvement. Celbi investigation report no. 75, vol 8, pp 67–178Google Scholar
  7. Cuenca B, San- José MC, Martínez MT, Ballester A, Vieitez AM (1999) Somatic embryogenesis from stem and leaf explant of Quercus robur L. Plant Cell Rep 18:538–543CrossRefGoogle Scholar
  8. Garin E, Isabel N, Plourde A (1998) Screening of large numbers of seed families of Pinus strobus L. for somatic embryogenesis from immature and mature zygotic embryos. Plant Cell Rep 18:37–43CrossRefGoogle Scholar
  9. Häggman H, Jokela A, Krajnakowa J, Kauppi A, Niemi K, Aronen T (1999) Somatic embryogenesis of Scots pine: cold treatment and characteristics of explants affecting induction. J Exp Bot 50:1769–1778CrossRefGoogle Scholar
  10. Harbard JL, Griffin AR, Espejo J (1999) Mass Control pollination of Eucalyptus globulus: a pratical reality. Can J For Res 29(10):1457–1463CrossRefGoogle Scholar
  11. Hartmann HT, Kester DE (1983) Plant propagation: principles and practices, 4th edn. Prentice-Hall, LondonGoogle Scholar
  12. Hernández I, Celestino C, Alegre J, Toribio M (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis II Plant regeneration from selected cork oak trees. Plant Cell Rep 21:765–770PubMedGoogle Scholar
  13. Högberg K-A, Ekberg L, Norell L, Arnold SV (1998) Integration of somatic embryogenesis in a tree breeding programme: a case study with Picea abies. Can J For Res 28:1536–1545CrossRefGoogle Scholar
  14. Jain SM (1999) An overview on progress of somatic embryogenesis in forest trees. In: Altman A, Ziv M, Izhar S (eds) Plant biotechnology and in vitro biology in the 21st century. Kluwer Academic Publishers, Dordrecht, pp 57–63Google Scholar
  15. Jain SM (2006) An update on overall recent progress on somatic embryogenesis in forest trees. In: Suzuki K, Ishii K, Sakurai S, Sasaki S (eds) Plantation technology in tropical forest science. Springer, Tokyo, pp 113–122CrossRefGoogle Scholar
  16. Keinonen-Mettälä K, Jalonen P, Eurola P, von Arnold S, von Weissenberg K (1996) Somatic embryogenesis of Pinus sylvestris. Scand J For Res 11:242–250CrossRefGoogle Scholar
  17. Klimaszewska K, Park Y-S, Overton C, MacEacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol Plant 37:392–399CrossRefGoogle Scholar
  18. Leal AMC, Cotterill PP (1997) Mass control-pollination of Eucalyptus globulus. In: Proceedings of IUFRO symposium on silviculture and genetic improvement of Eucalyptus, Salvador, Brazil, 24–29 August 1997Google Scholar
  19. Lopez GA, Potts BM, Dutkowski GW, Apiolaza LA, Gelid P (2002) Genetic variation and inter-trait correlations in Eucalyptus globulus base population trials in Argentina. For Genet 9:223–237Google Scholar
  20. MacKay JJ, Becwar MR, Park YS, Corderro JP, Pullman GS (2006) Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genet Genomes 2:1–9CrossRefGoogle Scholar
  21. Marques CM, Vasquez-Kool J, Carocha VJ, Ferreira JG, O’Malley DM, Liu BH, Sederoff R (1999) Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and E. globulus. Theor Appl Genet 99(6):936–946CrossRefGoogle Scholar
  22. Merkle SA (1995) Strategies for dealing with limitations of somatic embryogenesis in hardwood trees. Plant Tissue Cult Biotechnol 1:112–121Google Scholar
  23. Merkle SA, Parrott WA, Flinn BS (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 155–203Google Scholar
  24. Muralidharan EM, Mascarenhas AF (1995) Somatic embryogenesis in Eucalyptus. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 2. Kluwer, Dordrecht, pp 23–40Google Scholar
  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  26. Niskanen A-M, Lu J, Seitz S, Keinonen K, Weissenberg KV, Pappinen A (2004) Effect of parent genotype on somatic embryogenesis in Scots pine (Pinus sylvestris). Tree Physiol 24:1259–1265PubMedGoogle Scholar
  27. Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656CrossRefGoogle Scholar
  28. Park YS, Barrett JD, Bonga JM (1998a) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34:231–239CrossRefGoogle Scholar
  29. Park YS, Bonga JM, Mullin TJ (1998b) Clonal forestry. In: Mandal AK, Gibson GL (eds) Forest genetics and tree breeding. CBS, New Delhi, pp 143–167Google Scholar
  30. Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, MacEacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tissue Organ Cult 86:87–101CrossRefGoogle Scholar
  31. Park YS, Pond SE, Bonga JM (1993) Initiation of somatic embryogenesis in white spruce (Picea glauca): genetic control, culture treatment effects, and implications for tree breeding. Theor Appl Genet 86:427–436CrossRefGoogle Scholar
  32. Park YS, Pond SE, Bonga JM (1994) Genetic control in somatic embryos exposed to storage, maturation treatments, germination, and cryopreservation. Theor Appl Genet 89:742–750CrossRefGoogle Scholar
  33. Percy RE, Klimaszewska K, Cyr DR (2000) Evaluation of somatic embryogenesis for clonal propagation of western white pine. Can J For Res 30:1867–1876CrossRefGoogle Scholar
  34. Pinto G (2007) Eucalyptus globulus plant regeneration via somatic embryogenesis. PhD Thesis, University of AveiroGoogle Scholar
  35. Pinto G, Loureiro J, Lopes T, Santos CV (2004) Analysis of genetic stability of Eucalyptus globulus Labill. somatic embryos by flow cytometry. Theor Appl Genet 109:580–587PubMedCrossRefGoogle Scholar
  36. Pinto G, Santos C, Neves L, Araújo C (2002) Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep 21(3):208–213CrossRefGoogle Scholar
  37. Pinto G, Silva S, Coutinho J, Araujo C, Neves L, Santos C (2006) Importance of media mineral composition on the induction of somatic embryogenesis in Eucalyptus globulus Labill. In: 2° Simposio Iberoamericano de Eucalyptus globulus, Pontevedra, Spain, 17–20 October 2006Google Scholar
  38. Pullman GS, Johnson S (2002) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation rates. Ann For Sci 59:663–668CrossRefGoogle Scholar
  39. Ruaud JN, Lawrence N, Pepper S, Potts BM Borralho NMG (1999) Genetic variation of in vitro rooting ability with time in Eucalyptus globulus. Silvae Genet 48(1):4–7Google Scholar
  40. Schaffer HE, Usanis RA (1969) General least squares analysis of diallel experiments—a computer program—DIALL. Genetics Department research report no. 1, North Carolina State University, Raleigh, NCGoogle Scholar
  41. Silva JC, Borralho NMG, Potts BM (2004) Additive and non-additive genetic parameters from clonally replicated and seedling progenies of Eucalyptus globulus. Theor Appl Genet 108:1113–1119CrossRefGoogle Scholar
  42. Watt MP, Blakeway FC, Termignoni R, Jain SM (1999) Somatic embryogenesis in Eucalyptus grandis and E. dunnii. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 5. Kluwer, Dordrecht, pp 63–78Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • G. Pinto
    • 1
  • Y. -S. Park
    • 2
  • L. Neves
    • 3
  • C. Araújo
    • 3
  • C. Santos
    • 1
  1. 1.Laboratory of Biotechnology and Cytomics, CESAM and Department of BiologyUniversity of AveiroAveiroPortugal
  2. 2.Canadian Forestry Service–Canadian Wood Fibre CentreNatural Resources CanadaFrederictonCanada
  3. 3.Silvicaima SAConstância Sul, ConstânciaPortugal

Personalised recommendations