Plant Cell Reports

, 27:931 | Cite as

Expressed sequence tags from persimmon at different developmental stages

  • T. Nakagawa
  • A. NakatsukaEmail author
  • K. Yano
  • S. Yasugahira
  • R. Nakamura
  • N. Sun
  • A. Itai
  • T. Suzuki
  • H. Itamura
Genetics and Genomics


Persimmon (Diospyros kaki Thunb.) is an important fruit in Asian countries, where it is eaten as a fresh fruit and is also used for many other purposes. To understand the molecular mechanism of fruit development and ripening in persimmon, we generated a total of 9,952 expressed sequence tags (ESTs) from randomly selected clones of two different cDNA libraries. One cDNA library was derived from fruit of “Saijo” persimmon at an early stage of development, and the other from ripening fruit. These ESTs were clustered into 6,700 non-redundant sequences. Of the 6,700 non-redundant sequences evaluated, the deduced amino acid sequences of 4,356 (65%) showed significant homology to known proteins, and 2,344 (35%) showed no significant similarity to any known proteins in Arabidopsis databases. We report comparison of genes identified in the two cDNA libraries and describe some putative genes involved in proanthocyanidin and carotenoid synthesis. This study provides the first global overview of a set of genes that are expressed during fruit development and ripening in persimmon.


Carotenoid Diospyros kaki Fruit Proanthocyanidin Ripening 



This work was supported in part by Grant-in-Aid for Scientific Research (No 17380023) and Grant-in-Aid for Exploratory Research (No 19651084) from the Ministry of Education, Science and Culture, Japan.


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, Mueller LA, Yoon J, Doyle A, Lander G, Moseyko N, Yoo D, Xu I, Zoeckler B, Montoya M, Miller N, Weems D, Rhee SY (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 135:745–755. doi: 10.1104/pp.104.040071 PubMedCrossRefGoogle Scholar
  3. Camardella L, Carratore V, Ciardiello MA, Servillo L, Balestrieri C, Giovane A (2000) Kiwi protein inhibitor of pectin methylesterase. Amino-acid sequence and structural importance of two disulfide bridges. Eur J Biochem 267:4561–4565. doi: 10.1046/j.1432-1327.2000.01510.x PubMedCrossRefGoogle Scholar
  4. Chang JJ, Chen TH, Chan P, Chen YJ, Hsu FL, Lo MY, Lin JY (2001) The in vitro inhibitory effect of tannin derivatives on 3-hydroxy-3-methylglutaryl- coenzyme A reductase on Vero cells. Pharmacology 62:224–228. doi: 10.1159/000056099 PubMedCrossRefGoogle Scholar
  5. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116. doi: 10.1007/BF02670468 CrossRefGoogle Scholar
  6. Chen MH, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterase is required for viral cell-to-cell movement. EMBO J 19:913–920. doi: 10.1093/emboj/19.5.913 PubMedCrossRefGoogle Scholar
  7. Da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J, Cramer GR, Cushman JC, Cook DR (2005) Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol 139:574–597. doi: 10.1104/pp.105.065748 PubMedCrossRefGoogle Scholar
  8. Devitt LC, Sawbridge T, Holton TA, Mitchelson K, Dietzgen RG (2006) Discovery of genes associated with fruit ripening in Carica papaya using expressed sequence tags. Plant Sci 170:356–363. doi: 10.1016/j.plantsci.2005.09.003 CrossRefGoogle Scholar
  9. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I Accuracy assessment. Genome Res 8:175–185. doi: 10.1101/gr.8.3.175 PubMedGoogle Scholar
  10. Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59. doi: 10.1111/j.1365-313X.2004.02188.x PubMedCrossRefGoogle Scholar
  11. Fujiki H (1999) Two stages of cancer prevention with green tea. J Cancer Res Clin Oncol 125:589–597. doi: 10.1007/s004320050321 PubMedCrossRefGoogle Scholar
  12. Fujiki H (2005) Green tea: health benefits as cancer preventive for humans. Chem Rec 5:119–132PubMedCrossRefGoogle Scholar
  13. Giovane A, Balestrieri C, Quagliuolo L, Castaldo D, Servillo L (1995) A glycoprotein inhibitor of pectin methylesterase in kiwi fruit. Purification by affinity chromatography and evidence of a ripening-related precursor. Eur J Biochem 233:926–929. doi: 10.1111/j.1432-1033.1995.926_3.x PubMedCrossRefGoogle Scholar
  14. Gray J, Picton S, Shabbeer J, Schuch W, Grierson D (1992) Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol Biol 19:69–87. doi: 10.1007/BF00015607 PubMedCrossRefGoogle Scholar
  15. Grimplet J, Romieu C, Audergon JM, Marty I, Albagnac G, Lambert P, Bouchet JP, Terrier N (2005) Transcriptomic study of apricot fruit (Prunus armeniaca) ripening among 13,006 expressed sequence tags. Physiol Plant 125:281–292. doi: 10.1111/j.1399-3054.2005.00563.x CrossRefGoogle Scholar
  16. Hirano K, Yonemori K, Sugiura A (1995) Involvement of sugar metabolism in persimmon growth-inhibition by calyx lobe removal. J Am Soc Hortic Sci 120:75–77Google Scholar
  17. Ikegami A, Kitajima A, Yonemori K (2005a) Inhibition of flavonoid biosynthetic gene expression coincides with loss of astringency in pollination-constant, non-astringent (PCNA)-type persimmon fruit. J Hortic Sci Biotechnol 80:225–228Google Scholar
  18. Ikegami A, Yonemori K, Kitajima A, Sato A, Yamada M (2005b) Expression of genes involved in proanthocyanidin biosynthesis during fruit development in a Chinese pollination-constant, nonastringent (PCNA) persimmon, ‘Luo Tian Tian Shi’. J Am Soc Hortic Sci 130:830–835Google Scholar
  19. Ikegami A, Eguchi S, Kitajima A, Inoue K, Yonemori K (2007) Identificaiton of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Sci 172:1037–1047. doi: 10.1016/j.plantsci.2007.02.010 CrossRefGoogle Scholar
  20. Itamura H, Kitamura T, Taira S, Harada H, Ito N, Takahashi Y, Fukushima T (1991) Relationship between fruit softening, ethylene production and respiration in Japanese persimmon ‘Hiratanenashi’. J Japan Soc Hortic Sci 60:695–701. (Japanese with English summary)CrossRefGoogle Scholar
  21. Itamura H, Ohno Y, Yamamura H (1997) Characteristics of fruit softening in Japanese persimmon. Acta Hortic 436:179–188Google Scholar
  22. Kanayama Y (2006) Horticultural statistics of Japan. In: The Japanese society of horticultural science (ed) Horticulture in Japan 2006. Nakanishi Printing Co. Ltd, Kyoto, pp 15–20Google Scholar
  23. Kitagawa H, Glucina PG (1984) Cause and removal astringency. In: Ruscoe QW (eds) Persimmon culture in New Zealand. Science Information Publishing Centre, Wellington, pp 55–61Google Scholar
  24. Levi A, Davis A, Hernandez A, Wechter P, Thimmapuram J, Trebitsh T, Tadmor Y, Katzir N, Portnoy V, King S (2006) Genes expressed during the development and ripening of watermelon fruit. Plant Cell Rep 25:1233–1245. doi: 10.1007/s00299-006-0163-0 PubMedCrossRefGoogle Scholar
  25. Matsuo T, Ito S (1978) The chemical structure of kaki-tannin from immature fruit of the persimmon (Diospyros kaki L.). Agric Biol Chem 42:1637–1643Google Scholar
  26. Matsuo T, Kinoshita M, Itoo S, Shimoi K, Okada Y, Tomita I (1991) Antimutagenic effect of Kaki-shibu and its tannin degraded products on UV-induced mutagenesis in Escherichia coli. J Japan Soc Hortic Sci 60:429–435, (Japanese with English summary)Google Scholar
  27. Mekhfi H, ElHaouari M, Bnouham M, Aziz M, Ziyyat A, Legssyer A (2006) A Effects of extracts and tannins from Arbutus unedo leaves on rat platelet aggregation. Phytother Res 20:135–139. doi: 10.1002/ptr.1822 PubMedCrossRefGoogle Scholar
  28. Moser C, Segala C, Fontana P, Salakhudtinov I, Gatto P, Pindo M, Zyprian E, Toepfer R, Grando MS, Velasco R (2005) Comparative analysis of expressed sequence tags from different organs of Vitis vinifera L. Funct Integr Genomics 5:208–217. doi: 10.1007/s10142-005-0143-4 PubMedCrossRefGoogle Scholar
  29. Moyle R, Fairbairn DJ, Ripi J, Crowe M, Botella JR (2005) Developing pineapple fruit has a small transcriptome dominated by metallothionein. J Exp Bot 56:101–112. doi: 10.1093/jxb/eri015 PubMedGoogle Scholar
  30. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166. doi: 10.1104/pp.105.076208 PubMedCrossRefGoogle Scholar
  31. Niikawa T, Suzuki T, Ozeki T, Kato M, Ikoma Y (2007) Characteristics of carotenoid accumulation during maturation of the Japanese persimmon ‘Fuyu’. Hort Res (Japan) 6:251–256, (Japanese with English summary)CrossRefGoogle Scholar
  32. Ogata S (1976) Waruyoi to futsukayoi no hatsugenkijo kara mita kakinomi no alcohol-meitei e no kouka. Jyo-kyo 71:488–495, (Japanese)Google Scholar
  33. Okuma Y, Ishikawa H, Ito Y, Hayashi Y, Endo A, Watanabe T (1995) Effect of extracts from Hovenia dulcis Thunb. on alcohol concentration in rats and men administered alcohol. J Jpn Soc Nutr Food Sci 48:167–172, (Japanese with English summary)Google Scholar
  34. Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2003) The Arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228. doi: 10.1093/nar/gkg076 PubMedCrossRefGoogle Scholar
  35. Sasakawa Z (1955) Clinical studies on the depressor effects of SHIBU against hypertension. J Jpn Soc Intern Med 43:858–866, (Japanese with English summary)Google Scholar
  36. Taira S (1996) Astringency in persimmon. In: Linskens HF, Jackson JF (eds) Fruit analysis. Modern methods of plant analysis. vol 18, Springer, Berlin, pp 97–110Google Scholar
  37. Terrier N, Ageorges A, Abbal P, Romieu C (2001) Generation of ESTs from grape berry at various developmental stages. J Plant Physiol 158:1575–1583. doi: 10.1078/0176-1617-00566 CrossRefGoogle Scholar
  38. Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E (2006) Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proc Natl Acad Sci USA 103:6061–6066. doi: 10.1073/pnas.0501720103 PubMedCrossRefGoogle Scholar
  39. Yonemori K (1997) Persimmon industry and research activities in Japan. Acta Hortic 436:21–32Google Scholar
  40. Zheng GH, Sugiura A (1990) Changes in sugar composition in relation to invertase activity in the growth and ripening of persimmon (Diospyros kaki) fruit. J Japan Soc Hortic Sci 59:281–287, (Japanese with English summary)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • T. Nakagawa
    • 1
  • A. Nakatsuka
    • 2
    Email author
  • K. Yano
    • 3
  • S. Yasugahira
    • 2
  • R. Nakamura
    • 2
  • N. Sun
    • 2
  • A. Itai
    • 4
  • T. Suzuki
    • 5
  • H. Itamura
    • 2
  1. 1.Department of Molecular and Functional GenomicsCenter for Integrated Research in Science, Shimane UniversityMatsueJapan
  2. 2.Faculty of Life and Environmental SciencesShimane UniversityMatsueJapan
  3. 3.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  4. 4.Faculty of AgricultureTottori UniversityTottoriJapan
  5. 5.Graduate School of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations