Advertisement

Plant Cell Reports

, Volume 27, Issue 4, pp 617–631 | Cite as

Advances in molecular marker techniques and their applications in plant sciences

  • Milee Agarwal
  • Neeta Shrivastava
  • Harish PadhEmail author
Review

Abstract

Detection and analysis of genetic variation can help us to understand the molecular basis of various biological phenomena in plants. Since the entire plant kingdom cannot be covered under sequencing projects, molecular markers and their correlation to phenotypes provide us with requisite landmarks for elucidation of genetic variation. Genetic or DNA based marker techniques such as RFLP (restriction fragment length polymorphism), RAPD (random amplified polymorphic DNA), SSR (simple sequence repeats) and AFLP (amplified fragment length polymorphism) are routinely being used in ecological, evolutionary, taxonomical, phylogenic and genetic studies of plant sciences. These techniques are well established and their advantages as well as limitations have been realized. In recent years, a new class of advanced techniques has emerged, primarily derived from combination of earlier basic techniques. Advanced marker techniques tend to amalgamate advantageous features of several basic techniques. The newer methods also incorporate modifications in the methodology of basic techniques to increase the sensitivity and resolution to detect genetic discontinuity and distinctiveness. The advanced marker techniques also utilize newer class of DNA elements such as retrotransposons, mitochondrial and chloroplast based microsatellites, thereby revealing genetic variation through increased genome coverage. Techniques such as RAPD and AFLP are also being applied to cDNA-based templates to study patterns of gene expression and uncover the genetic basis of biological responses. The review details account of techniques used in identification of markers and their applicability in plant sciences.

Keywords

Molecular marker CAPS REMAP SRAP Retrotransposon-based Plant sciences Agriculture 

Abbreviations

RFLP

Restriction fragment length polymorphism

RAPD

Random amplified polymorphic DNA

AP-PCR

Arbitrarily primed-PCR

DAF

DNA amplification fingerprinting

AFLP

Amplified fragment length polymorphism

SSR

Simple sequence repeats

SNP

Single nucleotide polymorphism

SSCP

Single strand conformation polymorphism

CAPS

Cleaved amplified polymorphic sequence

SCAR

Sequence characterized amplified region

RAMP

Randomly amplified microsatellite polymorphisms

TRAP

Target region amplification polymorphism

SRAP

Sequence-related amplified polymorphism

IRAP

Inter-retrotransposon amplified polymorphism

REMAP

REtransposon-microsatellite amplified polymorphism

TD

Transposable display

MITES

Miniature inverted repeat transposable elements

IMP

Inter-MITE polymorphism

S-SAP

Sequence-specific amplification polymorphism

RBIP

Retrotransposon-based insertion polymorphism

RAP-PCR

RNA fingerprinting by arbitrarily primed PCR

References

  1. Adam-Blondon AF, Sevignac M, Bannerot H, Dron M (1994) SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor Appl Genet 88:865–870CrossRefGoogle Scholar
  2. Akihiro T, Umezawa T, Ueki C, Lobna B, Mizuno K, Ohta M, Fujimura T (2006) Genome wide cDNA-AFLP analysis of genes rapidly induced by combined sucrose and ABA treatment in rice cultured cells. FEBS Lett 580(25):5947–5995PubMedCrossRefGoogle Scholar
  3. Althoff DM, Gitzendanner MA, Segraves KA (2007) The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst Biol 56:477–484PubMedCrossRefGoogle Scholar
  4. Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collection. Crop Sci 46:448–455CrossRefGoogle Scholar
  5. Bachem CWB, van der Hoeve RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753PubMedCrossRefGoogle Scholar
  6. Bachem CWB, Oomen RJFJ, Visser GF (1998) Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep 16:157CrossRefGoogle Scholar
  7. Bardakci F (2001) Random amplified polymorphic DNA (RAPD) markers. Turk J Biol 25:185–196Google Scholar
  8. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–333PubMedGoogle Scholar
  9. Branco CJS, Vieira EA, Malone G, Kopp MM, Malone E, Bernardes A, Mistura CC, Carvalho FIF, Oliveira CA (2007) IRAP and REMAP assessments of genetic similarity in rice. J Appl Genet 48:107–113PubMedGoogle Scholar
  10. Bucci G, Anzidei M, Madaghiele A, Vendramin GG (1998) Detection of haplotypic variation and natural hybridization in halepensis-complex pine species using chloroplast simple sequence repeat (SSR) markers. Mol Ecol 7:1633–1643CrossRefGoogle Scholar
  11. Buetow KH, Edmonson MN, Cassidy AB (1999) Reliable identification of large numbers of candidate SNPs from public EST data. Nat Genet 21:323–332PubMedCrossRefGoogle Scholar
  12. Caetano-Anollés G, Bassam BJDNA (1993) Amplification fingerprinting using arbitrary oligonucleotide primers. App Biochem Biotechnol 42:189–200CrossRefGoogle Scholar
  13. Casa AM, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S, Wessler SR (2000) The MITE family Heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci USA 97:10083–10089PubMedCrossRefGoogle Scholar
  14. Chang RY, O’Donoughue LS, Bureau TE (2001) Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102:773–781CrossRefGoogle Scholar
  15. Chelkowski J, Stêpieñ L (2001) Molecular markers for leaf rust resistance genes in wheat. J Appl Genet 42:117–126PubMedGoogle Scholar
  16. Cheng H-Y, Yang W-C, Hsiao J-Y (2001) Genetic diversity and relationship among peach cultivars based on random amplified microsatellite polymorphism (RAMP). Bot Bull Acad Sin 42:201–206Google Scholar
  17. Ching ADA, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski A (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19PubMedCrossRefGoogle Scholar
  18. Chung S-M, Staub JE (2003) The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxan. Theor Appl Genet 107:757–776PubMedCrossRefGoogle Scholar
  19. Clark CM, Wentworth TM, Malley DMO (2000) Genetic discontinuity revealed by chloroplast microsatellites in eastern North American Abies (Pinaceae). Am J Bot 87:774–778PubMedCrossRefGoogle Scholar
  20. Cronn RC, Adams KL (2003) Quantitative analysis of transcript accumulation from genes duplicated by polyploidy using cDNA-SSCP. Biotechniques 34:726–734PubMedGoogle Scholar
  21. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107PubMedCrossRefGoogle Scholar
  22. Flavell AJ, Knox M, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–665PubMedCrossRefGoogle Scholar
  23. Fukuoka S, Inoue T, Miyao A, Monna L (1994) Mapping of sequence-tagged sites in rice by single conformation polymorphism. DNA Res 1:271–277PubMedCrossRefGoogle Scholar
  24. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  25. Grzebelus D (2006) Transposon insertion polymorphism as a new source of molecular markers. J Fruit Ornam Plant Res 14:21–29Google Scholar
  26. Gulsen O, Karagul S, Abak K (2006) Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia 62:41–45CrossRefGoogle Scholar
  27. Guo W, Zhang T, Shen X, Yu JZ, Kohel RJ (2003) Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland cotton. Crop Sci 43:2252–2256CrossRefGoogle Scholar
  28. Hafez EE, Ghany AGAA, Zakil EA (2006) LTR-retrotransposons-based molecular markers in cultivated Egyptian cottons G. barbadense L. Afr J Biotechnol 5:1200–1204Google Scholar
  29. Haliassos A, Chomel JC, Tesson L, Baudis M, Kruh J, Kaplan JC, Kitzis A (1989) Modification of enzymatically amplified DNA for the detection of point mutations. Nucleic Acids Res 17:3606PubMedCrossRefGoogle Scholar
  30. Hayashi K (1992) PCR-SSCP—rapid and easy detection of DNA-sequence changes. Hum Cell 5:180–184PubMedGoogle Scholar
  31. Hayashi K (1993) How sensitive is PCR-SSCP? Hum Mutat 2:338–346PubMedCrossRefGoogle Scholar
  32. Hemmat M, Weeden NF, Manganaris AG Lawson DM (1994) Molecular marker linkage map for apple. J Heredity 85:4–11Google Scholar
  33. Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294Google Scholar
  34. Hu J, Ochoa OE, Truco MJ, Vick BA (2005) Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica 144:225–235CrossRefGoogle Scholar
  35. Huang J, Sun M (1999) A modified AFLP with fluorescence-labelled primers and automated DNA sequencer detection for efficient fingerprinting analysis in plants. Biotechnol Techn 14:277–278CrossRefGoogle Scholar
  36. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711CrossRefGoogle Scholar
  37. Kiss GB, Csanadi G, Kalman K, Kalo P, Okresz L (1993) Construction of a basic linkage map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet 238:129–137PubMedGoogle Scholar
  38. Komori T, Nitta N (2005) Utlization of CAPS/dCAPS method to convert rice SNPs into PCR-based markers. Breed Sci 55:93–98CrossRefGoogle Scholar
  39. Konieczny A, Ausubel FM (1993) Procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410PubMedCrossRefGoogle Scholar
  40. Kumar A (1996) The adventures of the Ty1-Copia group of retrotransposons in plants. Trends Genet 12:41–43PubMedCrossRefGoogle Scholar
  41. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:479–532PubMedCrossRefGoogle Scholar
  42. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–546CrossRefGoogle Scholar
  43. Li L, Strahwald J, Hofferbert HR, Lübeck J, Tacke E, Junghans H, Wunder J, Gebhardt C (2005) DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 170:813–882PubMedCrossRefGoogle Scholar
  44. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–997PubMedCrossRefGoogle Scholar
  45. Liu Z, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794PubMedCrossRefGoogle Scholar
  46. Makino R, Yazyu H, Kishimoto Y, Sekiya T, Hayashi K (1992) F-SSCP (fluorescence-based polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis. PCR Methods Appl 2:10–13PubMedGoogle Scholar
  47. Mao C, Yi K, Yang L, Zheng B, Wu Y, Liu F, Wu P (2004) Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143PubMedCrossRefGoogle Scholar
  48. Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci 88:2336–2340PubMedCrossRefGoogle Scholar
  49. McDermott JM, Brandle U, Dutly F, Haemmerli UA, Keller S, Muller KE, Wolf MS (1994) Genetic variation in powdery mildew of barley: development of RAPD, SCAR and VNTR markers. Phytopathology 84:1316–1321CrossRefGoogle Scholar
  50. Mian MAR, Hopkins AA, Zwonitzer JC (2002) Determination of genetic diversity in tall fescue with AFLP markers. Crop Sci 42:944–950CrossRefGoogle Scholar
  51. Michaels SD, Amasino RMA (1998) A robust method for detecting single nucleotide changes as polymorphic markers by PCR. Plant J 14:381–385PubMedCrossRefGoogle Scholar
  52. Mullis KB, Faloona F (1987) Specific synthesis of DNA in vitro via polymerase chain reaction. Methods Enzymol 155:350–355Google Scholar
  53. Nair AS, Teo CH, Schwarzacher T, Heslop Harrison P (2005) Genome classification of banana cultivars from South India using IRAP markers. Euphytica 144:285–290CrossRefGoogle Scholar
  54. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392PubMedCrossRefGoogle Scholar
  55. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphism. Proc Natl Acad Sci USA 86:2766–2770PubMedCrossRefGoogle Scholar
  56. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–999CrossRefGoogle Scholar
  57. Paran I, Kesseli R, Michelmore R (1991) Identification of restriction-fragment-length-polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near isogenic lines. Genome 34:1021–1027PubMedGoogle Scholar
  58. Parducci L, Szmidt AE, Madaghiele A, Anzidei M, Vendramin GG (2001) Genetic variation at chloroplast microsatellites (cpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species. Theor Appl Genet 102:733–740CrossRefGoogle Scholar
  59. Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group of retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907PubMedCrossRefGoogle Scholar
  60. Porceddu A, Albertini E, Barcaccia G, Marconi G, Bertoli FB, Veronesi F (2002) Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol Genet Genomics 267:107–114PubMedCrossRefGoogle Scholar
  61. Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions chloroplast genomes: applications to the population genetics of pines. Popul Biol 92:7759–7763Google Scholar
  62. Provan J, Russell JR, Booth A, Powell W (1999a) Polymorphic chloroplast simple-sequence repeat primers for systematic and population studies in the genus Hordeum. Mol Ecol 8:505–511PubMedCrossRefGoogle Scholar
  63. Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell WA (1999b) Low mutation rate for chloroplast microsatellites. Genetics 153:943–947PubMedGoogle Scholar
  64. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and systematics. Trends Ecol Evol 16:142–147PubMedCrossRefGoogle Scholar
  65. Provan J, Biss PM, Mcmee D, Mathews S (2004) Universal primers for the amplification of chloroplast microsatellites in grasses (Poaceae). Mol Ecol Notes: Primer NoteGoogle Scholar
  66. Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics 271:91–97PubMedCrossRefGoogle Scholar
  67. Rajendrakumar P, Biswal AK, Balachandran SM, Ramesha MS, Viraktamath BC, Sundaram RMA (2007) Mitochondrial repeat specific marker for distinguishing wild abortive type cytoplasmic male sterile rice lines from their cognate isogenic maintainer lines. Crop Sci 47:207–211CrossRefGoogle Scholar
  68. Richard I, Beckman JS (1995) How neutral are synonymous codon mutations? Nat Genet 10:259PubMedCrossRefGoogle Scholar
  69. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933PubMedCrossRefGoogle Scholar
  70. Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470PubMedCrossRefGoogle Scholar
  71. Sanchez de la Hoz MP, Davila JP, Loarce Y, Ferrer E (1996) Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genome 39:112–117CrossRefGoogle Scholar
  72. Schlotterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:2211–2215CrossRefGoogle Scholar
  73. Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234PubMedCrossRefGoogle Scholar
  74. Sederoff RR, Levings CS, Timothy DH, Hu WWL (1981) Evolution of DNA sequence organization in mitochondrial genomes of Zea. Proc Natl Acad Sci USA 78:5953–5957PubMedCrossRefGoogle Scholar
  75. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT Schilling EE, Small R (2005) The tortoise and Hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166CrossRefGoogle Scholar
  76. Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retrotransposons that whales form a clade within even-toed ungulates. Nature 388:666–670PubMedCrossRefGoogle Scholar
  77. Sobrino B, Briona M, Carracedoa A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194PubMedCrossRefGoogle Scholar
  78. Soleimani VD, Baum BR, Johnson DA (2003) Efficient validation of single nucleotide polymorphisms in plants by allele-specific PCR, with an example from barley. Plant Mol Biol Rep 21:281–288Google Scholar
  79. Soranzo N, Provan J, Powell W (1999) An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42:158–161PubMedCrossRefGoogle Scholar
  80. Spaniolas S, May ST, Bennett MJ, Tuker GA (2006) Authentication of coffee by means of PCR-RFLP analysis and lab-on-a chip capillary electrophoresis. J Agric Food Chem 54:7466–7470PubMedCrossRefGoogle Scholar
  81. Sperisen C, Büchler U, Gugerli F, Mátyás G, Geburek T, Vendramin GG (2001) Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol 10:257–263PubMedCrossRefGoogle Scholar
  82. Sunyaev S, Hanke J, Aydin A, Wirkner U, Zastrow I, Reich J, Bork P (1999) Prediction of nonsynonymous single nucleotide polymorphisms in human disease-associated genes. J Mol Med 77:754–760PubMedCrossRefGoogle Scholar
  83. Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705PubMedCrossRefGoogle Scholar
  84. Syed NH, Sureshundar S, Wilkinson MJ, Bhau BS, Cavalcanti JJV, Flavell AJ (2005) Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theor Appl Genet 110:1195–1202PubMedCrossRefGoogle Scholar
  85. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12(10):4127–4138PubMedCrossRefGoogle Scholar
  86. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  87. Torress AM, Weeden NF, Martin A (1993) Linkage among isozyme, RFLP, and RAPD markers. Plant Physiol 101:394–452Google Scholar
  88. van de Wiel C, Arens P, Vosman B (1999) Microsatellite retrieval in lettuce (Lactuca sativa L.). Genome 42:139–149PubMedCrossRefGoogle Scholar
  89. van den Broeck D, Maes T, Sauer M, Zethof J, De Keukeleire P, D’Hauw M, Van Montagu M, Gerats T (1998) Plant J 13:121–129PubMedCrossRefGoogle Scholar
  90. van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA finger-printing based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753PubMedCrossRefGoogle Scholar
  91. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  92. Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Roderme SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128PubMedCrossRefGoogle Scholar
  93. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas WTB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (SSAP). Mol Gen Genet 253:687–694PubMedCrossRefGoogle Scholar
  94. Weiland JJ, Yu MH (2003) A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugarbeet. Crop Sci 43:814–881CrossRefGoogle Scholar
  95. Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–11PubMedCrossRefGoogle Scholar
  96. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218PubMedCrossRefGoogle Scholar
  97. Welsh J, Chada K, Dalal SS, Ralph D, Cheng R McClelland M (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res 20:4965–4970PubMedCrossRefGoogle Scholar
  98. Wenz HM, Robertson JM, Menchen S, Oaks F, Demorest DM, Scheibler D, Rosenblum BB, Wike C, Gilbert DA, Efcavitch JW (1998) High-precision genotyping by denaturing capillary electrophoresis. Genome Res 3:69–80Google Scholar
  99. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1991) DNA polymorphisms amplified by arbitrary primers are usefμl as genetic markers. Nucleic Acids Res 18:6531–6535CrossRefGoogle Scholar
  100. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNA. Proc Natl Acad Sci USA 84:9054–9058PubMedCrossRefGoogle Scholar
  101. Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225–235PubMedCrossRefGoogle Scholar
  102. Wu KS, Jones R, Danneberger L, Scolnik P (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res 22:3257–3258PubMedCrossRefGoogle Scholar
  103. Yaa YX, Li M, Liu Z, Hao YJ Zhai H (2007) A novel gene, screened by cDNA-AFLP approach, contributes to lowering the acidity of fruit in apple. Plant Physiol Biochem 45:139–145CrossRefGoogle Scholar
  104. Yin X, Stam P, Dourleijn CJ, Kropff MJ (1999) AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theor Appl Genet 99:244–253CrossRefGoogle Scholar
  105. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice Genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  106. Zietkiewicz E, Rafalski JA, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain-reaction amplification. Genomics 20:176–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.B. V. Patel Pharmaceutical Education Research and Development (PERD) CentreAhmadabadIndia

Personalised recommendations