Plant Cell Reports

, 27:499 | Cite as

Isolation and characterization of genomic retrotransposon sequences from octoploid strawberry (Fragaria × ananassa Duch.)

  • Yue Ma
  • Haiyue Sun
  • Guiling Zhao
  • Hongyan Dai
  • Xiuyan Gao
  • He Li
  • Zhihong Zhang
Genetic Transformation and Hybridization


Strawberry (Fragaria spp.) is a kind of herbaceous perennial plant that propagates vegetatively. The conserved domains of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy groups of LTR retrotransposons were amplified from the cultivated strawberry (Fragaria × ananassa Duch.). Sequence analysis of clones demonstrated that 5 of 19 Ty1-copia group unique sequences and 2 of 10 Ty3-gypsy unique sequences in F. × ananassa genome possessed either stop codon or frameshift. Ty1-copia group sequences are highly heterogeneous (divergence ranged from 1 to 69.8%), but the Ty3-gypsy group sequences are less (divergence ranged from 1 to 10%). Southern dot blot hybridization result suggested that both of the LTR retrotransposons are present in the genome of cultivated strawberry with high copy number (Ty1-copia group 2,875 Ty3-gypsy group 348). RT-PCR amplification from total RNA, which was extracted from leaves of micropropagated strawberry plants, did not yield either of the RT fragments. This is the first report on the presence of RT sequences of Ty1-copia and Ty3-gypsy group retrotransposons in F. × ananassa genome.


Fragaria × ananassa Retrotransposons Reverse transcriptase Heterogeneity Transcriptional activity 



Long terminal repeat


Polymerase chain reaction


Reverse transcriptase


Transposable element


Reverse transcription polymerase chain reaction


Sequence-specific amplification polymorphism



This work was supported by National Natural Science Foundation of China (Grant No. 30671432), Program for New Century Excellent Talents in University (NCET) and Science Foundation of Department of Education from Liaoning Province.


  1. Asíns MJ, Monforte AJ, Mestre PF, Carbonell EA (1999) Citrus and Prunus copia-like retrotransposons. Theor Appl Genet 99:503–510CrossRefGoogle Scholar
  2. Beguiristain T, Grandbastien MA, Puigdomenech P, Casacuberta JM (2001) Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol 127:212–221PubMedCrossRefGoogle Scholar
  3. Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36PubMedCrossRefGoogle Scholar
  4. Bernet GP, Asíns MJ (2003) Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus. Theor Appl Genet 108:121–130PubMedCrossRefGoogle Scholar
  5. Casacuberta JM, Santiago N (2003) Plant LTR-retro-transposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11PubMedCrossRefGoogle Scholar
  6. Chang L, Zhang Z, Yang H, Li H, Dai H (2007) Detection of strawberry RNA and DNA viruses by RT-PCR using total nucleic acid as a template. J Phytopathol 155:431–436CrossRefGoogle Scholar
  7. Charlesworth B (1986) Genetic divergence between transposable elements. Genet Res 48:111–118PubMedCrossRefGoogle Scholar
  8. Dai H, Zhang Z, Guo X (2007) Adventitious bud regeneration from leaf and cotyledon explants of Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.). In Vitro Cell Dev Biol Plant 43:2–8Google Scholar
  9. Echenique V, Stamova B, Wolters P, Lazo G, Carollo VL, Dubcovsky J (2002) Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor Appl Genet 104:840–844PubMedCrossRefGoogle Scholar
  10. Flavell AJ (1999) Long terminal repeat retrotransposons jump between species. Proc Natl Acad Sci USA 96:12211–12212PubMedCrossRefGoogle Scholar
  11. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992a) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644PubMedCrossRefGoogle Scholar
  12. Flavell AJ, Smith DB, Kumar A (1992b) Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet 231:233–242PubMedGoogle Scholar
  13. Friesen N, Brandes A, Heslop-Harrison (2001) Diversity, origin and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18:1176–1188PubMedGoogle Scholar
  14. Gabriel A, Willems M, Mules EH, Boeke JD (1996) Replication infidelity during a single cycle of Ty1 retrotransposition. Proc Natl Acad Sci USA 93:7767–7771PubMedCrossRefGoogle Scholar
  15. Grandbastien MA (1992) Retroelements in higher plants. Trends Genet 8:103–108PubMedGoogle Scholar
  16. Grandbastien MA, Spielmann A., Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380PubMedCrossRefGoogle Scholar
  17. Hill P, Burford D, Martin DMA, Flavell AJ (2005) Retrotransposon populations of Vicia species with varying genome size. Mol Genet Genomics 273:371–381PubMedCrossRefGoogle Scholar
  18. Hirochika H, Hirochika R (1993) Ty1-copia group retrotransposons as ubiquitous components of plant genomes. Jpn J Genet 68:35–46PubMedCrossRefGoogle Scholar
  19. Hirochika H, Fukuchi A, Kikuchi F (1992) Retrotransposon families in rice. Mol Gen Genet 233:209–216PubMedCrossRefGoogle Scholar
  20. Hirochika H, Otsuki H, Yoshikawa M, Otsuki Y, Sugimoto K, Takeda S (1996a) Autonomous transposition of the tobacco retrotransposon Tto1 in rice. Plant Cell 8:725–734PubMedCrossRefGoogle Scholar
  21. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996b) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788PubMedCrossRefGoogle Scholar
  22. Jordan IK, Matyunina LV, McDonald JF (1999) Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc Natl Acad Sci USA 96:12621–12625PubMedCrossRefGoogle Scholar
  23. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607PubMedCrossRefGoogle Scholar
  24. Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 94:7704–7711PubMedCrossRefGoogle Scholar
  25. Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S (2001) OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol 42:1345–1354PubMedCrossRefGoogle Scholar
  26. Kinet JM, Parmentier A (1989) The flowering behaviour of micropropagated strawberry plants cv. ‘Gorella’: the influence of the number of sub-cultures on the multiplication medium. Acta Hortic 265:327–334Google Scholar
  27. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982PubMedCrossRefGoogle Scholar
  28. Kubis SE, Castilho AM, Vershinin AV, Heslop-Harrison JS (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79PubMedCrossRefGoogle Scholar
  29. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532PubMedCrossRefGoogle Scholar
  30. Kumar A, Pearce SR, McLean K, Harrison G, Heslop-Harrison JS, Waugh R, Flavell AJ (1997) The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution and use as molecular markers. Genetica 100:205–217PubMedCrossRefGoogle Scholar
  31. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  32. Kumekawa N, Ohtsubo E, Ohtsubo H (1999) Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom. Genes Genet Syst 74:299–307PubMedCrossRefGoogle Scholar
  33. Lodhi MA, Ye GN, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars Vitis species and Ampelopsis. Plant Mol Bio Rep 12:6–13CrossRefGoogle Scholar
  34. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410PubMedCrossRefGoogle Scholar
  35. MacRae AF (1998) A pentamer-repeat-containing DNA sequence in Texas bluebonnet (Lupinus texensis Hook.). Genome 41:553–559PubMedCrossRefGoogle Scholar
  36. Matsuoka Y, Tsunewaki K (1996) Wheat retrotransposon families identified by reverse transcriptase domain analysis. Mol Biol Evol 13:1384–1392PubMedGoogle Scholar
  37. Moore PP, Robbins JA, Sjulin TM (1991) Field performance of Olympus strawberry subclones. J AM Soc Hortic Sci 26:192–194Google Scholar
  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  39. Muthukumar B, Bennetzen JL (2004) Isolation and characterization of genomic and transcribed retrotransposon sequences from sorghum. Mol Genet Genomics 271:308–316PubMedCrossRefGoogle Scholar
  40. Nehra NS, Kartha KK, Stushnoff C (1991) Nuclear DNA content and isozyme variation in relation to morphogenic potential of Strawberry (Fragaria x ananassa) callus cultures. Can J Bot 69:239–244CrossRefGoogle Scholar
  41. Nicholas KB, Nicholas HB (1997).
  42. Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996a) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250:305–315PubMedGoogle Scholar
  43. Pearce SR, Kumar A, Flavell AJ (1996b) Activation of the Ty1-copia group retrotransposons of potato (Solanum tuberosum) during protoplast isolation. Plant Cell Rep 15:949–953CrossRefGoogle Scholar
  44. Pouteau S, Grandbastien MA, Boccara M (1994) Microbial elicitors of plant defense responses activate transcription of a retrotransposon. Plant J 5:535–542CrossRefGoogle Scholar
  45. Pouteau S, Huttner E, Grandbastien MA, Caboche M (1991) Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J 10:1911–1918PubMedGoogle Scholar
  46. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 273:765–769CrossRefGoogle Scholar
  47. Sant VJ, Sainani MN, Sami-subbu R, Ranjekar PK, Gupta VS (2000) Ty1-copia retrotransposon-like elements in chickpea genome: their identification, distribution and use for diversity analysis. Gene 257:157–166PubMedCrossRefGoogle Scholar
  48. Santini S, Cavallini A, Natali L, Minelli S, Maggini F, Cionini PG (2002) Ty1-copia-like and Ty3-gypsy-like DNA sequence in Helianthus species. Chromosoma 111:192–200PubMedCrossRefGoogle Scholar
  49. Silva JC, Loreto EL, Clark Jonathan BC (2004) Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol 6:57–72PubMedGoogle Scholar
  50. Su PY, Brown TA (1997) Ty3-gypsy-like retrotransposon sequences in tomato. Plasmid 38:148–157PubMedCrossRefGoogle Scholar
  51. Swartz HJ, Galletta GJ, Zimmerman RH (1981) Field performance and phenotypic stability of tissue culture-propagated strawberries. J Am Soc Hortic Sci 106:667–673Google Scholar
  52. Tahara M, Aoki T, Suzuka S, Yamashita H, Tanaka M, Matsunaga S, Kokumai S (2004) Isolation of an active element from a high-copy-number family of retrotransposons in the sweetpotato genome. Mol Gen Genomics 272:116–127CrossRefGoogle Scholar
  53. Takeda S, Sugimoto K, Otsuki H, Hirochika H (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol Biol 36:365–376PubMedCrossRefGoogle Scholar
  54. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  55. Villordon AQ, Jarret RL, Labonte DR (2000) Detection of Ty1-copia-like reverse transcriptase sequences in Ipomoea batatas (L.) Poir. Plant Cell Rep 19:1219–1225CrossRefGoogle Scholar
  56. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694PubMedCrossRefGoogle Scholar
  57. Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821PubMedCrossRefGoogle Scholar
  58. Wilhelm M, Whilhem FX (2001) Reverse transcription of retroviruses and LTR retrotransposons. Cell Mol Life Sci 58:1246–1262PubMedCrossRefGoogle Scholar
  59. Yanez M, Verdugo I, Rodriguez M, Prat S, Ruiz-Lara S (1998) Highly heterogeneous families of Ty1/copia retrotransposons in the Lycopersicon chilense genome. Gene 222:223–228PubMedCrossRefGoogle Scholar
  60. Yao JL, Dong YH, Bret AM (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Plant Biol 98:1306–1311Google Scholar
  61. Zaki EA, Abdel Ghany AA (2004) Ty3-gypsy Retro-Transposons in Egyptian cotton (G. barbadense). J Cott Sci 8:179–185Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yue Ma
    • 1
  • Haiyue Sun
    • 1
  • Guiling Zhao
    • 1
    • 3
  • Hongyan Dai
    • 1
  • Xiuyan Gao
    • 1
  • He Li
    • 1
  • Zhihong Zhang
    • 1
    • 2
  1. 1.College of HorticultureShenyang Agricultural UniversityShenyangPeople’s Republic of China
  2. 2.Key Laboratory of Agricultural Biotechnology of Liaoning ProvinceShenyangPeople’s Republic of China
  3. 3.College of ForestryShenyang Agricultural UniversityShenyangPeople’s Republic of China

Personalised recommendations