Plant Cell Reports

, Volume 26, Issue 10, pp 1861–1868 | Cite as

The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules

  • Marcela Salazar
  • Enrique González
  • José A. Casaretto
  • Josep M. Casacuberta
  • Simón Ruiz-Lara
Physiology and Biochemistry

Abstract

The LTR retrotransposons are the most abundant mobile elements in the plant genome and seem to play an important role in genome reorganization induced by environmental challenges. Their success in this function depends on the ability of their promoters to respond to different signaling pathways that regulate plant adaptation to biotic and abiotic stresses. The promoter of the TLC1.1 retrotransposon from Solanum chilense contains two primary ethylene-responsive elements (PERE boxes) that are essential for its response to ethylene and for the stress-induced expression. Here, we describe that a 270 bp fragment (P270), derivative of this retroelement promoter, is also able to activate the transcription of the GUS reporter gene in transgenic plants in response to salicylic acid (SA), abscisic acid (ABA), methyl jasmonate (MeJA), hydrogen peroxide (H2O2) and the synthetic auxin 2,4-D. PERE box-dependent and independent routes are involved in the response of P270 to these signal molecules. MeJA, H2O2 and 2,4-D activate this promoter through cis-acting elements other than PERE boxes, whereas ABA and SA act via a PERE box-independent pathway but require this element for maximal activation. Three putative cis-acting elements MRE, GCN4 and GT1/TCA identified in the P270 promoter may be involved in the PERE box-independent activation pathway. These results suggest that the promoter of TLC1.1 may act as an integrator of different signal transduction pathways, allowing this member of the TLC1 retrotransposon family to be activated in response to multiples challenges.

Keywords

cis-element PERE box Phytormones Retrotrasposon Solanum chilense Stress signaling 

References

  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis ATMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78PubMedCrossRefGoogle Scholar
  2. Anderson J P, Badruzsaufari E, Schenk P M, Manners J M, Desmond O J, Ehlert C, Maclean D J, Ebert P R, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479PubMedCrossRefGoogle Scholar
  3. Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115PubMedCrossRefGoogle Scholar
  4. Beguiristain T, Grandbastien MA, Puigdomenech P, Casacuberta JM (2001) Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol 12:212–221CrossRefGoogle Scholar
  5. Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43:403–434PubMedCrossRefGoogle Scholar
  6. Buchel AS, Brederode FT, Bol JF, Linthorst HJM (1999) Mutation of GT-1 binding sites in the Pr-1a promoter influences the level of inducible gene expression in vivo. Plant Mol Biol 40:387–396PubMedCrossRefGoogle Scholar
  7. Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11PubMedCrossRefGoogle Scholar
  8. Chen W, Singh KB (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19:667–677PubMedCrossRefGoogle Scholar
  9. Cheng C, Daigen M, Hirochika H (2006) Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genomic 276(4):378–390CrossRefGoogle Scholar
  10. Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172PubMedCrossRefGoogle Scholar
  11. Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, Hancock JT, Neill SJ (2006) Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47(6):907–916PubMedCrossRefGoogle Scholar
  12. Diaz-Martin J, Almoguera C, Prieto-Dapena P, Espinosa JM, Jordano J (2005) Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter. Plant Physiol 139:1483–1494PubMedCrossRefGoogle Scholar
  13. Feschotte C, Jiang N, Wessler RS (2002) Plant retrotransposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341PubMedCrossRefGoogle Scholar
  14. Goldsbrough AP., Albrecht H., Strford R (1993) Salicylic acid inducible binding of tobacco nuclear protein to a 10 pb sequence which is strongly conserved amongst stress-inducible genes. Plant J 3:563–571PubMedCrossRefGoogle Scholar
  15. Grandbastien MA, Lucas H, Morel JB, Mhiri C, Vernhettes S, Casacuberta JM (1997) The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica 100:241–252PubMedCrossRefGoogle Scholar
  16. Grandbastien MA, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa A-PP, Le QH, Melayah D, Petit M, Poncet C, Tam SM, Van Sluys MA, Mhiri C (2005). Stress activation and genomic impact of Tnt1 retrotransposon in Solanaceae. Cytogenet Genome Res 110:229–241PubMedCrossRefGoogle Scholar
  17. Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49PubMedCrossRefGoogle Scholar
  18. Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schafer E, Kudla J, Harter K (2004) The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 23:3290–3302PubMedCrossRefGoogle Scholar
  19. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300PubMedCrossRefGoogle Scholar
  20. Hirochika H, Okamoto H, Kakutani T (2000) Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12:357–369PubMedCrossRefGoogle Scholar
  21. Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sinica 41:1–10Google Scholar
  22. Itzhaki H, Maxson JM, Woodson WR (1994) An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc Natl Acad Sci USA 91(19):8925–8929PubMedCrossRefGoogle Scholar
  23. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  24. Jensen S, Gassama MP, Heidmann T (1999) Taming of transposable elements by homology-dependent gene silencing. Nat Genet 21:209–212PubMedCrossRefGoogle Scholar
  25. Kidwell MG., Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99PubMedCrossRefGoogle Scholar
  26. Konishi M, Yanagisawa S (2005) Signaling crosstalk between ethylene and other molecules. Plant Biotechnol 22:401–407Google Scholar
  27. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532PubMedCrossRefGoogle Scholar
  28. Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99:473–483PubMedCrossRefGoogle Scholar
  29. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327PubMedCrossRefGoogle Scholar
  30. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178PubMedCrossRefGoogle Scholar
  31. Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) Jasmonate-insensitive1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950PubMedCrossRefGoogle Scholar
  32. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801PubMedCrossRefGoogle Scholar
  33. Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565PubMedCrossRefGoogle Scholar
  34. Montgomery J, Goldman S, Deikman J, Margossian L, Fischer RL (1993) Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci 90(13):5939–5943PubMedCrossRefGoogle Scholar
  35. Onodera Y, Suzuki A, Wu CY, Washida H, Takaiwa F (2001) A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. J Biol Chem 276:14139–14152PubMedGoogle Scholar
  36. Oñate-Sánchez L, Singh KB (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128:1313–1322PubMedCrossRefGoogle Scholar
  37. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, MoonBC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135(4):2150–2161PubMedCrossRefGoogle Scholar
  38. Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046PubMedCrossRefGoogle Scholar
  39. Pasquali G, Erven ASW, Ouwerkerk PBF, Menke FLH, Memelink J (1999) The promoter of the strictosidine synthase gene from perwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF. Plant Mol Biol 39:1299–1310PubMedCrossRefGoogle Scholar
  40. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  41. Song F, Goodman RM (2002) Cloning and identification of the promoter of the tobacco Sar8.2b gene, a gene involved in systemic acquired resistance. Gene 290:115–124PubMedCrossRefGoogle Scholar
  42. Suoniemi A, Anamthawat-Jonsson K, Arna T, Schulman AH (1996) Retrotransposon BARE-1 is major, dispersed component of the barley (Hordeum vulgare L) genome. Plant Mol Biol 30:1321–1329PubMedCrossRefGoogle Scholar
  43. Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-pb cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18:383–393PubMedCrossRefGoogle Scholar
  44. Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154PubMedCrossRefGoogle Scholar
  45. Tapia G, Verdugo I, Yánez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, González E, Ruiz-Lara S (2005) Involvement of ethylene in stress-induced expression of the TLC1.1 Retrotransposon from Lycopersicon chilense Dun. Plant Physiol 138(4):2075–2086PubMedCrossRefGoogle Scholar
  46. Vance V, Vaucheret H (2002). RNA silencing in plants—defense and counterdefense. Science 292:2277–2280CrossRefGoogle Scholar
  47. Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, van Montagu M, Zabeau M et al (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA 100:16113–16118PubMedCrossRefGoogle Scholar
  48. Vernhettes S, Grandbastien MA, Casacuberta JM. (1998) The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high variability of its regulatory sequences. Mol Biol Evol 15(7):827–836PubMedGoogle Scholar
  49. Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784PubMedCrossRefGoogle Scholar
  50. Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F (1999) Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol 40:1–12PubMedCrossRefGoogle Scholar
  51. Yang H-J, Shen H, Chen L, Xing Y-Y, Wang Z-Y, Zhang J-L, Hong M-M (2002) The OsEBP-89 gene of rice encodes a putative EREBP transcription factor and is temporally expressed in developing endosperm and intercalary meristem. Plant Mol Biol 50:379–391PubMedCrossRefGoogle Scholar
  52. Yañez M, Verdugo I, Rodriguez M, Prat S, Ruiz-Lara S (1998) Highly heterogeneous families of Ty1/copia retrotransposons in the Lycopersicon chilense genome. Gene 222(2):223–228PubMedCrossRefGoogle Scholar
  53. Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R (2004) The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220(2):262–270PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Marcela Salazar
    • 1
  • Enrique González
    • 1
  • José A. Casaretto
    • 1
  • Josep M. Casacuberta
    • 2
  • Simón Ruiz-Lara
    • 1
  1. 1.Instituto de Biología Vegetal y BiotecnologíaUniversidad de TalcaTalcaChile
  2. 2.Department of Molecular GeneticsIBMB-CSICBarcelonaSpain

Personalised recommendations