Advertisement

Plant Cell Reports

, Volume 26, Issue 8, pp 1133–1154 | Cite as

Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.)

  • Indra K. Vasil
Review

Abstract

Only modest progress has been made in the molecular genetic improvement of wheat following the production of the first transgenic plants in 1992, made possible by the development of efficient, long-term regenerable embryogenic cultures derived from immature embryos and use of the biolistics method for the direct delivery of DNA into regenerable cells. Transgenic lines expressing genes that confer resistance to environmentally friendly non-selective herbicides, and pests and pathogens have been produced, in addition to lines with improved bread-making and nutritional qualities; some of these are ready for commercial production. Reduction of losses caused by weeds, pests and pathogens in such plants not only indirectly increases available arable land and fresh water supplies, but also conserves energy and natural resources. Nevertheless, the work carried out thus far can be considered only the beginning, as many difficult tasks lie ahead and much remains to be done. The challenge now is to produce higher-yielding varieties that are more nutritious, and are resistant or tolerant to a wide variety of biotic as well as abiotic stresses (especially drought, salinity, heavy metal toxicity) that currently cause substantial losses in productivity. How well we will meet this challenge for wheat, and indeed for other cereal and non-cereal crops, will depend largely on establishing collaborative partnerships between breeders, molecular biologists, biotechnologists and industry, and on how effectively they make use of the knowledge and insights gained from basic studies in plant biology and genetics, the sequencing of plant/cereal genomes, the discovery of synteny in cereals, and the availability of DNA-based markers and increasingly detailed chromosomal maps.

Keywords

Cereals Genetic transformation Transgenic wheat Triticum aestivum L. 

References

  1. Abebe T, Guenzi AC, Bjorn M, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755PubMedCrossRefGoogle Scholar
  2. Ahmed KZ, Sagi F (1993) Culture of and fertile plant regeneration from regenerable embryogenic cell-derived protoplasts of wheat (Triticum aestivum L.). Plant Cell Rep 12:175–179CrossRefGoogle Scholar
  3. Al-Babili S, Beyer P (2005) Golden rice—five years on the road—five years to go? Trends Plant Sci 12:565–573CrossRefGoogle Scholar
  4. Altpeter F, Vasil V, Srivastava V, Stoger E, Vasil IK (1996a) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 16:12–17CrossRefGoogle Scholar
  5. Altpeter F, Vasil V, Srivastava V, Vasil IK (1996b) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 into wheat. Nat Biotechnol 14:1155–1159CrossRefGoogle Scholar
  6. Altpeter F, Diaz I, McAuslane H, Gaddour K, Carbonero P, Vasil IK (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breed 5:53–63CrossRefGoogle Scholar
  7. Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Nigel T, Visser R (2005a) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327CrossRefGoogle Scholar
  8. Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kumlehn J, Dudler R, Schweizer P (2005b) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol 57:271–283CrossRefGoogle Scholar
  9. Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry P, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319–327CrossRefGoogle Scholar
  10. Alvarez ML, Gomez M, Carrillo JM, Vallejos RH (2001) Analysis of dough functionality of flours from transgenic wheat. Mol Breed 8:103–108CrossRefGoogle Scholar
  11. Anand A, Trick HN, Gill BS, Muthukrishnan S (2003a) Stable gene expression and random gene silencing in wheat. Plant Biotechnol J 1:241–251CrossRefGoogle Scholar
  12. Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003b) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111CrossRefGoogle Scholar
  13. Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola over-expressing a mitochondrial citrate synthase. Plant Physiol 132:2205–2217PubMedCrossRefGoogle Scholar
  14. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by over-expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258PubMedCrossRefGoogle Scholar
  15. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  16. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  17. Bahieldin A, Mafouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El- Itriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427CrossRefGoogle Scholar
  18. Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, Beale MH (2006) A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J 4:381–392PubMedCrossRefGoogle Scholar
  19. Bariana HS, Parry N, Barclay LI, Loughman R, McLean RJ, Shankar M, Wilson RE, Willey NJ, Francki M (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112:1143–1148PubMedCrossRefGoogle Scholar
  20. Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri P, Shewry PR, Barcelo P (1997) Transformation of wheat with HMW subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299PubMedCrossRefGoogle Scholar
  21. Barro F, Barcelo P, Lazzeri PA, Shewry PR, Martin A, Ballesteros J (2002) Field evaluation and agronomic performance of transgenic wheat. Theor Appl Genet 105:980–984PubMedCrossRefGoogle Scholar
  22. Barro F, Barcelo P, Lazzeri PA, Shewry PR, Ballesteros J, Martin A (2003) Functional properties of flours from field grown transgenic wheat lines expressing the HMW glutenin subunit 1Ax1 and 1Dx5 genes. Mol Breed 12:223–229CrossRefGoogle Scholar
  23. Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J 4:369–380PubMedCrossRefGoogle Scholar
  24. Beachy RN (1997) Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr Opin Biotechnol 8:215–220PubMedCrossRefGoogle Scholar
  25. Becker D, Brettschneider R, Lorz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5:299–307PubMedCrossRefGoogle Scholar
  26. Bialy H (2002) Transgenic wheat finally produced. Biotechnology 10:630Google Scholar
  27. Bieri S, Potrykus I, Futterer J (2000) Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet 100:755–763CrossRefGoogle Scholar
  28. Bieri S, Potrykus I, Futterer J (2003) Effects of combined expression of antifungal barley seed proteins in transgenic wheat on powdery mildew infection. Mol Breed 11:37–48CrossRefGoogle Scholar
  29. Blechl AE, Anderson OD (1996) Expression of a novel high molecular weight glutenin subunit gene in transgenic wheat. Nat Biotechnol 14:875–879PubMedCrossRefGoogle Scholar
  30. Blechl AE, Le HQ, Anderson OD (1998) Engineering changes in wheat flour by genetic transformation. J Plant Physiol 152:703–707Google Scholar
  31. Blechl A, Lin J, Nguyen S, Chan R, Anderson OD, Dupont FM (2007) Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular weight glutenin subunits yield doughs with increased mixing strength and tolerance. J Cereal Sci 45:172–183CrossRefGoogle Scholar
  32. Bliffeld M, Mundy J, Potrykus I, Futterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98:1079–1086CrossRefGoogle Scholar
  33. Botella-Pavia P, Rodriguez-Conception M (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol Plant 126:369–381CrossRefGoogle Scholar
  34. Branlard G (1987) Prediction of bread wheat quality from HMW glutenins and gliadins. In: Lasztily R, Bekes F (eds) Proceedings of the 3rd international workshop on gluten proteins. World Scientific, Singapore, pp 604–612Google Scholar
  35. Branlard G, Dardevet M (1985) Diversity of grain protein and bread wheat quality. II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. J Cereal Sci 3:345–354CrossRefGoogle Scholar
  36. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203Google Scholar
  37. Bregitzer P, Blechl AE, Fiedler D, Lin J, Sebesta P, De Soto JF, Chicaiza O, Dubcovsky J (2006) Changes in high molecular weight glutenin subunit composition can be genetically engineered without affecting wheat agronomic performance. Crop Sci 46:1553–1563CrossRefGoogle Scholar
  38. Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206CrossRefGoogle Scholar
  39. Brinch-Pedersen H, Hatzack F, Sorensen LD, Holm PB (2003) Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.). Transgen Res 12:649–659CrossRefGoogle Scholar
  40. Brinch-Pedersen H, Hatzack F, Stoger E, Arcalis E, Pontopidan K, Holm PB (2006) Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis. J Agric Food Chem 54:4624–4632PubMedCrossRefGoogle Scholar
  41. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffensen B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333PubMedCrossRefGoogle Scholar
  42. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin NJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-d-glucans. Science 311:1940–1942PubMedCrossRefGoogle Scholar
  43. Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087PubMedCrossRefGoogle Scholar
  44. Carr JP, Zaitlin M (1993) Replicase-mediated resistance. Semin Virol 4:339–347CrossRefGoogle Scholar
  45. Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho H, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerant gene. Science 304:1151–1154PubMedCrossRefGoogle Scholar
  46. Chamberlain DA, Brettell RIS, Last DI, Witrzens B, McElroy D, Dolferus R, Dennis ES (1994) The use of Emu promoter with antibiotic and herbicide resistance genes for the selection of transgenic wheat callus and rice plants. Aust J Plant Physiol 21:95–112Google Scholar
  47. Chang YF, Wang WC, Warfield CY, Nguyen HT, Wong JR (1991) Plant regeneration from protoplasts isolated from long-term cell cultures of wheat (Triticum aestivum L.). Plant Cell Rep 9:611–614CrossRefGoogle Scholar
  48. Chase CD (2006) Genetically engineered cytoplasmic male sterility. Trends Plant Sci 11:7–9PubMedCrossRefGoogle Scholar
  49. Chen WP, Gu X, Liang GH, Muthukrishnan S, Chen PD, Liu DJ, Gill BS (1998) Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker. Theor Appl Genet 97:1296–1306CrossRefGoogle Scholar
  50. Chen WP, Chen PD, Liu DJ, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill BS (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet 99:755–760CrossRefGoogle Scholar
  51. Chen Z, Young TE, Ling J, Chang S, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530PubMedCrossRefGoogle Scholar
  52. Chen X, Faris JD, Hu J, Stack RW, Adhikari T, Elias EM, Kianian SF, Cai X (2007) Saturation and comparative mapping of a major Fusarium head blight resistance QTL in tetraploid wheat. Mol Breed 19:113–124CrossRefGoogle Scholar
  53. Cheng A, Xia G (2004) Somatic hybridization between common wheat and Italian ryegrass. Plant Sci 166:1219–1226CrossRefGoogle Scholar
  54. Cheng M, Fry JE, Pang S, Zhou H, Hironaka C, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980PubMedGoogle Scholar
  55. Chibbar RN, Kartha KK, Leung N, Qureshi J, Carswell K (1991) Transient expression of marker genes in immature embryos of spring wheat (Triticum aestivum L.) through microprojectile bombardment. Genome 34:453–460Google Scholar
  56. Chin JV, Scott KK (1977) Studies on the formation of roots and shoots in wheat callus. Ann Bot 41:473–481Google Scholar
  57. Chowdhury MKU, Vasil V, Vasil I.K (1994) Molecular analysis of plants regenerated from embryogenic cultures of wheat. Theor Appl Genet 87:821–828CrossRefGoogle Scholar
  58. Clausen M, Krauter R, Schachermayr G, Potrykus I, Sautter C (2000) Antifungal activity of a virally encoded gene in transgenic wheat. Nat Biotechnol 18:446–449PubMedCrossRefGoogle Scholar
  59. Cocking EC (1979) All sorts of protoplasts. Nature 281:180–181CrossRefGoogle Scholar
  60. Cocking EC (2000) Plant protoplasts. In Vitro Cell Dev Biol Plant 36:77–82Google Scholar
  61. Cure M., Mott RL (1978) A comparative anatomical study of organogenesis in cultured tissues of maize, wheat and oats. Physiol Plant 42:91–96CrossRefGoogle Scholar
  62. Curtis BC, Rajaram S, Macpherson HG (eds) (2002) Bread wheat: improvement and production. FAO plant production and protection series, No. 30. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  63. Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brule-Babel A (2006) Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472PubMedCrossRefGoogle Scholar
  64. Darlington H, Fido R, Tatham AS, Jones H, Salmon SE, Shewry PR (2003) Milling and baking properties of field grown wheat expressing HMW subunit transgenes. J Cereal Sci 38:301–306CrossRefGoogle Scholar
  65. Davey MR, Cocking EC, Freeman J, Pearce N, Tudor I (1980) Transformation of petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci Lett 18:307–313CrossRefGoogle Scholar
  66. De Block M, Botterman J, Vandeweile M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxyfying enzyme. EMBO J 6:2513–2518PubMedGoogle Scholar
  67. De Block M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131CrossRefGoogle Scholar
  68. DebRoy S, Thilmony R, Kwack Y, Nomura K, He SY (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci USA 101:9927–9932PubMedCrossRefGoogle Scholar
  69. De Cleene M, De Lay J (1976) The host range of crown gall. Bot Rev 42:389–466CrossRefGoogle Scholar
  70. De la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthase. Science 276:1566–1568CrossRefGoogle Scholar
  71. De La Pena A, Lorz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 235:274–276CrossRefGoogle Scholar
  72. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254PubMedCrossRefGoogle Scholar
  73. DellaPenna D, Last RL (2006) Progress in the dissection and manipulation of plant vitamin E biosynthesis. Physiol Plant 126:356–368CrossRefGoogle Scholar
  74. Denby K, Gehring C (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 23:547–552PubMedCrossRefGoogle Scholar
  75. De Wet JMJ, De Wet AE, Brink DE, Hepburn AG, Woods JH (1985) Gametophyte transformation in maize (Zea mays, Gramineae). In: Mulcahy DL, Mulcahy GB, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer, New York, pp 59–64Google Scholar
  76. Dudits D, Nemet G, Haydu Z (1975) Study of callus growth and organ formation in wheat (Triticum aestivum) tissue cultures. Can J Bot 53:957–963CrossRefGoogle Scholar
  77. Duke SO (ed) (1996) Herbicide-resistant crops: agricultural, environmental, economic, regulatory, and technical aspects. CRC Press, Boca RatonGoogle Scholar
  78. Duvick DN (2001) Biotechnology in the 1930s: the development of hybrid maize. Nat Rev Genet 2:69–74PubMedCrossRefGoogle Scholar
  79. FAOSTAT (2005) Food and agriculture organization of the United Nations (http://www.faostat.fao.org/)
  80. Fettig S, Hess D (1999) Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgen Res 8:179–189CrossRefGoogle Scholar
  81. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258PubMedCrossRefGoogle Scholar
  82. Flavell RB, Goldsbrough AP, Robert LS, Schnick D, Thompson RD (1989) Genetic variation in wheat HMW glutenin subunits and the molecular basis of breadmaking quality. Biotechnology 7:1281–1285Google Scholar
  83. Fraley RT (2003) Improving the nutritional quality of plants. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer, Dordrecht, pp 61–67Google Scholar
  84. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fru JS, Galluppi GR, Goldberg SP, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807PubMedCrossRefGoogle Scholar
  85. Fraley RT, Rogers SG, Horsch RB (1986) Genetic transformation in higher plants. Crit Rev Plant Sci 4:1–46CrossRefGoogle Scholar
  86. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence transfer. Nat Genet 38:953–956PubMedCrossRefGoogle Scholar
  87. Gale M, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedCrossRefGoogle Scholar
  88. Galili G (1997) The prolamin storage proteins of wheat and its relatives. In: Larkins BA, Vasil IK (eds) Advances in cellular and molecular biology of plants. Cellular and molecular biology of plant seed development. Kluwer, Dordrecht, vol 4, pp 221–256Google Scholar
  89. Gibbon BC, Larkins BA (2005) Molecular genetic approaches to developing quality protein maize. Trends Genet 21:227–233PubMedCrossRefGoogle Scholar
  90. Giovanini MP, Saltzmann KD, Puthoff DP, Gonzalo M, Ohm HW, Williams CE (2007) A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol Plant Pathol 8:69–82CrossRefPubMedGoogle Scholar
  91. Giroux MJ, Shaw J, Barry G, Cobb BG, Greene T, Okita T, Hannah LC (1996) A single gene mutation that increases maize seed weight. Proc Natl Acad Sci USA 93:5824–5829PubMedCrossRefGoogle Scholar
  92. Goff SA et al (2002) The draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  93. Graves A, Goldman S (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7:43–50CrossRefGoogle Scholar
  94. Gressel J (1992) The need for herbicide-resistant crops. In: Denholm I, Devonshire AL, Holloman DW (eds) Resistance ‘91: achievements and developments in combating pesticide resistance. Elsevier, London, p 283Google Scholar
  95. Gressel J (1996) The potential roles for herbicide-resistant crops in world agriculture. In: Duke SO (ed) Herbicide-resistant crops. CRC Press, Boca Raton, pp 231–250Google Scholar
  96. Grossniklaus U, Moore JM, Brukhin V, Gheyselinck J, Baskar R, Vielle-Calzada J, Baroux C, Page DR, Spillane C (2003) Engineering of apomixis in crop plants: what can we learn from sexual model systems? In: Vasil IK (ed) Plant biotechnology 2002 and beyond, Kluwer, Dordrecht, pp 309–314Google Scholar
  97. Halford NG, Field JM, Blair H, Urwin P, Moore K, Robert L, Thompson R, Flavell RB, Tatham AS, Shewry PR (1992) Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83:373–378CrossRefGoogle Scholar
  98. Hammond-Kosack KE, Parker JE (2003) Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193PubMedCrossRefGoogle Scholar
  99. Hannah LC (1997) Starch synthesis in the maize seed. In: Larkins B, Vasil, IK (eds) Advances in cellular and molecular biology of plants. Cellular and molecular biology of plant seed development. Kluwer, Dordrecht, vol 4, pp 375–405Google Scholar
  100. Hanson H, Borlaug NE, Anderson RG (1982) Wheat in the Third World. Westview Press, BoulderGoogle Scholar
  101. Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil IK, Fraley RT (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6:265–270CrossRefGoogle Scholar
  102. Hauptmann RM, Ashraf M, Vasil V, Hannah LC, Vasil IK, Ferl R (1988a) Promoter strength comparisons of maize Shrunken 1 and Alcohol Dehydrogenase 1 and 2 promoters in mono- and di-cotyledonous species. Plant Physiol 88:1063–1066CrossRefGoogle Scholar
  103. Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988b) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86:602–606CrossRefGoogle Scholar
  104. He DG, Yang YM, Scott KJ (1992) Plant regeneration from protoplasts of wheat (Triticum aestivum cv. Hartog). Plant Cell Rep 11:16–19CrossRefGoogle Scholar
  105. He DG, Mouradov A, Yang YM, Mouradova E, Scott KJ (1994) Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Rep 14:192–196CrossRefGoogle Scholar
  106. He GY, Rooke L, Steele S, Bekes F, Gras P, Tatham AS, Fido R, Barcelo P, Shewry PR, Lazzeri PA (1999) Transformation of pasta wheat (Triticum durum L. var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality. Mol Breed 5:377–396CrossRefGoogle Scholar
  107. Heck GR, CaJacob CA, Padgette SR (2003) Discovery, development, and commercialization of Roundup Ready® crops. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer, Dordrecht, pp 139–142Google Scholar
  108. Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9PubMedCrossRefGoogle Scholar
  109. Hess D, Dressler K, Nimmrichter R (1990) Transformation experiments by pipetting Agrobacterium into spikelets of wheat (Triticum aestivum L.). Plant Sci 72:233–244CrossRefGoogle Scholar
  110. Hilder VA, Gatehouse AMR, Sheerman SE, Barker SF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163CrossRefGoogle Scholar
  111. Hoekenaga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743CrossRefGoogle Scholar
  112. Hoffmann MP, Zalom FG, Wilson LT, Smilanick JM, Malyi LD, Kiser J, Hilder VA, Barnes WM (1992) Field evaluation of transgenic tobacco containing genes encoding Bacillus thuringiensis endotoxin or cowpea trypsin inhibitor: efficacy against Heliocoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 85:2516–2522Google Scholar
  113. Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:15–38PubMedCrossRefGoogle Scholar
  114. Horvath H, Rostoks N, Brueggeman R, Steffensen B, von Wettstein D, Kleinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci USA 100:364–369PubMedCrossRefGoogle Scholar
  115. Hossain T, Rosenberg I, Selhub J, Kishore G, Beachy R, Schubert K (2004) Enhancement of folates in plants through metabolic engineering. Proc Natl Acad Sci USA 101:5158–5163PubMedCrossRefGoogle Scholar
  116. Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010–1019PubMedCrossRefGoogle Scholar
  117. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Over-expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992PubMedCrossRefGoogle Scholar
  118. Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (KHT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727PubMedCrossRefGoogle Scholar
  119. Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355CrossRefGoogle Scholar
  120. Jackson SA, Zhang P, Chen WP, Phillips RL, Friebe B, Muthukrishnan S, Gill BS (2001) High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet 103:56–62CrossRefGoogle Scholar
  121. Jauhar PP (2006) Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop Sci 46:1841–1849CrossRefGoogle Scholar
  122. Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA 102:3117–3122PubMedCrossRefGoogle Scholar
  123. Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci USA 86:9871–9875PubMedCrossRefGoogle Scholar
  124. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  125. Jones JDG, Brignett G, Smilde D (2003) Putting plant disease resistance genes to work. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer, Dordrecht, pp 11–17Google Scholar
  126. Jouanin L, Bonande-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131:1–11CrossRefGoogle Scholar
  127. Karunaratne S, Sohn A, Mouradov A, Scott J, Steinbiss H, Scott KJ (1996) Transformation of wheat with the gene encoding the coat protein of barley yellow mosaic virus. Aust J Plant Physiol 23:429–435CrossRefGoogle Scholar
  128. Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21:429–436PubMedGoogle Scholar
  129. Kihara H (1944) Discovery of DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic 19:13–14Google Scholar
  130. Koltunow AMG, Tucker MR (2003) Advances in apomixis research: can we fix heterosis. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer, Dordrecht, pp 39–46Google Scholar
  131. Komari T, Kubo T (1999) Methods of genetic transformation: Agrobacterium tumefaciens. In: Vasil IK (ed) Cellular and molecular biology of plants. Molecular improvement of cereal crops. Kluwer, Dordrecht, vol 5, pp 43–82Google Scholar
  132. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396PubMedCrossRefGoogle Scholar
  133. Ku MSB, Agaie S, Nomura M, Fukuyama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17:76–80PubMedCrossRefGoogle Scholar
  134. Kumar S, Allen GC, Thompson WF (2006) Gene targeting in plants: fingers on the move. Trends Plant Sci 11:159–161PubMedCrossRefGoogle Scholar
  135. Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:286–294CrossRefGoogle Scholar
  136. Lakshmanan P (2006) Somatic embryogenesis in sugarcane. In Vitro Cell Dev Biol Plant 42:201–205Google Scholar
  137. Leckband G, Lorz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1004–1012CrossRefGoogle Scholar
  138. Ledoux L, Huart R (1969) Fate of exogenous bacterial deoxyribonucleic acid in barley seedling. J Mol Biol 43:243–248PubMedCrossRefGoogle Scholar
  139. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003a) Control of tillering in rice. Nature 422:618–621CrossRefGoogle Scholar
  140. Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M, Li J (2003b) Brittle Culm1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 15:2020–2031CrossRefGoogle Scholar
  141. Li C, Xia G, Xiang F, Zhou C, Cheng A (2004) Regeneration of asymmetric somatic hybrid plants from fusion of two types of wheat with Russian wild rye. Plant Cell Rep 23:461–467PubMedCrossRefGoogle Scholar
  142. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939PubMedCrossRefGoogle Scholar
  143. Linthorst HJM (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10:123–150CrossRefGoogle Scholar
  144. Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323–343PubMedCrossRefGoogle Scholar
  145. Lonsdale DM, Onde S, Cumming A (1990) Transient expression of exogenous DNA in intact viable wheat embryos following particle bombardment. J Exp Bot 41:1161–1165CrossRefGoogle Scholar
  146. Lorz H, Baker B, Schell J (1985) Gene transfer to cereal cells mediated by protoplast transformation. Mol Gen Genet 199:178–182CrossRefGoogle Scholar
  147. Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138:2364–2373PubMedCrossRefGoogle Scholar
  148. Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397CrossRefGoogle Scholar
  149. Lucca P, Poletti S, Sauter C (2006) Genetic engineering approaches to enrich rice with iron and vitamin A. Physiol Plant 126:291–303CrossRefGoogle Scholar
  150. Luo Z, Wu R (1988) A simple method for the transformation of rice via the pollen tube pathway. Plant Mol Biol Rep 6:165–174CrossRefGoogle Scholar
  151. Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3(MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536PubMedCrossRefGoogle Scholar
  152. Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart Jr CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274PubMedCrossRefGoogle Scholar
  153. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691PubMedCrossRefGoogle Scholar
  154. McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89Google Scholar
  155. Magalhaes JV (2006) Aluminum tolerance genes are conserved between monocots and dicots. Proc Natl Acad Sci USA 103:9749–9750PubMedCrossRefGoogle Scholar
  156. Magnusson I, Bornmann CH (1985) Anatomical observations on somatic embryogenesis from scutellar tissue of immature zygotic embryos of Triticum aestivum. Physiol Plant 63:137–145CrossRefGoogle Scholar
  157. Maheshwari N, Rajyalakshmi K, Baweja K, Dhir SK, Chowdhry CN, Maheshwari SC (1995) In vitro culture of wheat and genetic transformation—retrospect and prospect. Crit Rev Plant Sci 14:149–178CrossRefGoogle Scholar
  158. Marsan PA, Lupotto E, Locatelli F, Qiao YM, Cattaneo M (1993) Analysis of stable events of transformation in wheat via PEG-mediated DNA uptake into protoplasts. Plant Sci 93:85–94CrossRefGoogle Scholar
  159. Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129–131CrossRefGoogle Scholar
  160. Mascarenhas AF, Pathak M, Hendre RR, Jagannathan V (1975) Tissue cultures of maize, wheat, rice and sorghum. I. Initiation of viable callus and root cultures. Indian J Exp Biol 13:103–107Google Scholar
  161. Masci S, D’Ovidio R, Scossa F, Patacchini C, Lafiandra D, Anderson OD, Blechl AE (2003) Production and characterization of a transgenic bread wheat line over-expressing a low-molecular-weight glutenin subunit gene. Mol Breed 12:209–222CrossRefGoogle Scholar
  162. Meyer FD, Smidansky ED, Beecher B, Greene TW, Giroux MJ (2004) The maize Sh2r6hs ADP-glucose pyrophosphorylase (AGP) large subunit confers enhanced AGP properties in transgenic wheat (Triticum aestivum). Plant Sci 167:899–911CrossRefGoogle Scholar
  163. Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A′′′2 in Triticum monococcum. Mol Genet Genomics 275:193–203PubMedCrossRefGoogle Scholar
  164. Morandini P, Salamini F (2003) Plant biotechnology and breeding: allied for years to come. Trends Plant Sci 8:70–75PubMedCrossRefGoogle Scholar
  165. Muller E, Lorz H, Lutticke S (1996) Variability of transgene expression in clonal cell lines of wheat. Plant Sci 114:71–82CrossRefGoogle Scholar
  166. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84PubMedCrossRefGoogle Scholar
  167. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  168. Napier JA, Haslam R, Caleron MV, Michaelson LV, Beaudoin F, Sayanova O (2006) Progress towards the production of long-chain polyunsaturated fatty-acid in transgenic plants: plant metabolic engineering comes of age. Physiol Plant 126:398–406CrossRefGoogle Scholar
  169. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedCrossRefGoogle Scholar
  170. Nehra NS, Chibbar RN, Leung N, Caswell K, Millard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J 5:285–297CrossRefGoogle Scholar
  171. Nomura K, DebRoy S, Lee YH, Pumplin N, Jones J, Je SY (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–223PubMedCrossRefGoogle Scholar
  172. Normile D (2006) Consortium aims to supercharge rice photosynthesis. Science 313:423PubMedCrossRefGoogle Scholar
  173. Oard JH, Paige D, Dvorak J (1989) Chimeric gene expression using maize intron in cultured cells of bread wheat. Plant Cell Rep 8:156–160CrossRefGoogle Scholar
  174. Oerke E-C, Dehne H-W, Schonbeck F, Weber A (1994) Crop production and crop protection. Elsevier, AmsterdamGoogle Scholar
  175. O’Hara JF, Street HE (1978) Wheat callus culture: the initiation, growth and organogenesis of callus derived from various explant sources. Ann Bot 42:1029–1038Google Scholar
  176. Ohta Y (1986) High efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA 83:715–719PubMedCrossRefGoogle Scholar
  177. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282PubMedCrossRefGoogle Scholar
  178. Ohto M, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102:3123–3128PubMedCrossRefGoogle Scholar
  179. Okubara PA, Blechl AE, McCormick SP, Alexander NJ, Dill-Macky R, Hohn TM (2002) Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet 106:74–83PubMedGoogle Scholar
  180. Oldach KH, Becker D, Lorz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microbe Interact 14:832–838PubMedCrossRefGoogle Scholar
  181. Ou-Lee TM, Turgeon R, Wu R (1986) Expression of a foreign gene linked to either a plant-virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat and sorghum. Proc Natl Acad Sci USA 83:6815–6819PubMedCrossRefGoogle Scholar
  182. Ozias-Akins P, Vasil IK (1982) Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): evidence for somatic embryogenesis. Protoplasma 110:95–105CrossRefGoogle Scholar
  183. Ozias-Akins P, Vasil IK (1983a) Callus induction and growth from the mature embryo of Triticum aestivum (wheat). Protoplasma 115:104–113CrossRefGoogle Scholar
  184. Ozias-Akins P, Vasil IK (1983b) Improved efficiency and normalization of somatic embryogenesis in Triticum aestivum (wheat). Protoplasma 117:40–44CrossRefGoogle Scholar
  185. Ozias-Akins P, Vasil IK (1983c) Proliferation of and regeneration from the epiblast of Trititucm aestivum (wheat; Gramineae) embryos. Am J Bot 70:1092–1097CrossRefGoogle Scholar
  186. Padgette SR, Re DB, Barry GF, Eichholtz DE, Delannay X, Fuchs RL, Kishore GM, Fraley RT (1996) New weed control opportunities: development of soybeans with a Roundup Ready® gene. In: Duke SO (ed) Herbicide-resistant crops. CRC Press, Boca Raton, pp 53–84Google Scholar
  187. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487PubMedCrossRefGoogle Scholar
  188. Patnaik D, Khurana P (2001) Wheat biotechnology—a minireview. Electron J Biotechnol 4:74–102. http://www.ejb.org/content/vol4/issue2/full/4/ Google Scholar
  189. Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38:141–153CrossRefGoogle Scholar
  190. Payne P., Corield KG, Holt LM, Blackman JA (1981) Correlations between the inheritance of certain high molecular weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J Food Sci Agric 32:51–60CrossRefGoogle Scholar
  191. Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987). The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Food Sci Agric 40:51–65CrossRefGoogle Scholar
  192. Peijin L, Zeng D, Liu X, Xu D, Gu D, Li J, Qian Q (2003) Mapping and characterization of a tiller-spreading mutant lazy-2 in rice. Chin Sci Bull 48:2715–2717Google Scholar
  193. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green Revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261PubMedCrossRefGoogle Scholar
  194. Phillips RL, Vasil IK (eds) (2001) Advances in cellular and molecular biology of plants, 2nd edn. DNA-based markers in plants. Kluwer, Dordrecht, vol 6Google Scholar
  195. Pickett AA (1993) Hybrid wheat: results and problems. In: Robbelen G, Weber WE (eds). Paul Parry Scientific Publishers, BerlinGoogle Scholar
  196. Popineau Y, Deshayes G, Lefebvre J, Fifo R, Tatham AS, Shewry PR (2001) Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight glutenin subunit transgenes. J Agric Food Chem 49:395–401PubMedCrossRefGoogle Scholar
  197. Potrykus I (1990) Gene transfer to cereals: as assessment. Biotechnology 8:535–542CrossRefGoogle Scholar
  198. Potrykus I (2001) The ‘Golden Rice’ tale. In Vitro Cell Dev Biol Plant 37:93–100Google Scholar
  199. Puchta H, Hohn B (2005) Green light for gene targeting in plants. Proc Natl Acad Sci USA 102:11961–11962PubMedCrossRefGoogle Scholar
  200. Qiao YM, Cattaneo M, Lacatelli F, Lupotto E (1992) Plant regeneration from long term suspension culture-derived protoplasts of hexaploid wheat (Triticum aestivum L.). Plant Cell Rep 11:262–265CrossRefGoogle Scholar
  201. Rakszegi M, Bekes F, Lang L, Tamas L, Shewry PR, Bedo Z (2005) Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. J Cereal Sci 42:15–23CrossRefGoogle Scholar
  202. Rebeille F, Ravanel S, Jabrin S, Douce R, Storozhenko S, van der Straeten D (2006) Folates in plants: biosynthesis, distribution and enhancement. Physiol Plant 126:330–342CrossRefGoogle Scholar
  203. Redway FA, Vasil V, Lu D, Vasil IK (1990a) Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L.). Theor Appl Genet 79:609–617CrossRefGoogle Scholar
  204. Redway FA, Vasil V, Vasil IK (1990b) Characterization and regeneration of wheat (Triticum aestivum L.) embryogenic cell suspension cultures. Plant Cell Rep 8:714–717CrossRefGoogle Scholar
  205. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551PubMedCrossRefGoogle Scholar
  206. Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry PR (1999) Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci 30:115–120CrossRefGoogle Scholar
  207. Rooke L, Byrne D, Salgueiro S (2000) Marker gene expression driven by the maize ubiquitin promoter in transgenic wheat. Ann Appl Biol 136:167–172CrossRefGoogle Scholar
  208. Sahrawat AK, Becker D, Lutticke S., Lorz H (2003) Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165:1147–116CrossRefGoogle Scholar
  209. Sakamoto T (2006) Phytohormones and rice crop yield: strategies and opportunities for genetic improvement. Transgen Res 15:399–404CrossRefGoogle Scholar
  210. Sakamoto T, Morinaka Y, Ohnishi T, Sunobara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109PubMedCrossRefGoogle Scholar
  211. Sanford JC (2000) The development of the biolistics process. In Vitro Cell Dev Biol Plant 36:303–308CrossRefGoogle Scholar
  212. Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Tech 5:27–37CrossRefGoogle Scholar
  213. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) A mutant gibberellin-synthesis gene in rice. Nature 416:701–702PubMedCrossRefGoogle Scholar
  214. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653PubMedCrossRefGoogle Scholar
  215. Seilmeier W, Belitz HD, Wieser H (1991) Separation and quantitative determination of high-molecular-weight subunits of glutenin from different wheat varieties and genetic variants of the variety Sisco. Z Lebensm Unters Forsch 192:124–129CrossRefGoogle Scholar
  216. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:1945–1999CrossRefGoogle Scholar
  217. Shaked H, Bessudo-Melamed C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102:12265–12269PubMedCrossRefGoogle Scholar
  218. Sharp GL, Martin JM, Lanning SP, Blake NK, Brey CW, Sivamani E, Qu R, Tolbert LE (2002) Field evaluation of transgenic and classical sources of wheat streak mosaic virus resistance. Crop Sci 42:105–110PubMedCrossRefGoogle Scholar
  219. Sheehy J, Mitchell P, Hardy B (eds) (1999) Redesigning rice photosynthesis to increase yield. International Rice Research Institute, Los Banos, Laguna, PhilippinesGoogle Scholar
  220. Shewry PR, Powers S, Field JM, Fido RJ, Jones HD, Arnold GM, West J, Lazzeri PA, Barcelo P, Barro F, Tatham AS, Bekes F, Butow B, Darlington H (2006) Comparative field performance over three years and two sites of transgenic wheat lines expressing HMW subunit transgenes. Theor Appl Genet 113:128–136PubMedCrossRefGoogle Scholar
  221. Shields R (1993) Pastoral synteny. Nature 365:297–298CrossRefGoogle Scholar
  222. Shimada T (1978) Plant regeneration from the callus induced from wheat embryo. Jpn J Genet 53:371–374CrossRefGoogle Scholar
  223. Shimada T, Yamada Y (1979) Wheat plants regenerated from embryo cell cultures. Jpn J Genet 54:379–385CrossRefGoogle Scholar
  224. Shinozaki K, Yamaguchi-Shinozaki K (2003) Molecular mechanisms of plant responses and tolerance of drought and cold stress. In: Vasil IK (eds) Plant biotechnology 2002 and beyond. Kluwer, Dordrecht, pp 31–37Google Scholar
  225. Shrawat AK, Lorz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603PubMedCrossRefGoogle Scholar
  226. Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y, Gill BK, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555PubMedCrossRefGoogle Scholar
  227. Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R (2000a) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9CrossRefGoogle Scholar
  228. Sivamani E, Brey CW, Dyer WE, Talbert LE, Qu R (2000b) Resistance to wheat streak mosaic virus in transgenic wheat expressing viral replicase (Nib) gene. Mol Breed 6:469–477CrossRefGoogle Scholar
  229. Sivamani E, Brey CW, Talbert LE, Young MA, Dyer WE, Kaniewski WK, Qu R (2002) Resistance to wheat mosaic virus in transgenic wheat engineered with the viral coat protein gene. Transgen Res 11:31–41CrossRefGoogle Scholar
  230. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, non-transgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81PubMedCrossRefGoogle Scholar
  231. Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat increases seed yield. Proc Natl Acad Sci USA 99:1724–1729PubMedCrossRefGoogle Scholar
  232. Smidansky ED, Martin JM, Hannah LC, Fischer AM, Giroux MJ (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216:656–664PubMedGoogle Scholar
  233. Specter M (2006) The last drop. The New Yorker. 23 October 2006, pp 60–71Google Scholar
  234. Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048PubMedCrossRefGoogle Scholar
  235. Spillane C, Steimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187CrossRefGoogle Scholar
  236. Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development—virgin births in farmers’ fields? Nat Biotechnol 22:687–691PubMedCrossRefGoogle Scholar
  237. Srivastava V, Vasil V, Vasil IK (1996) Molecular characterization of the fate of transgenes in wheat (Triticum aestivum L.). Theor Appl Genet 92:1031–1037CrossRefGoogle Scholar
  238. Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96:11117–11121PubMedCrossRefGoogle Scholar
  239. Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM (1992) Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258:287–292PubMedCrossRefGoogle Scholar
  240. Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73CrossRefGoogle Scholar
  241. Stokstad E (2004) Monsanto pulls the plug on genetically modified wheat. Science 304:1088–1089PubMedCrossRefGoogle Scholar
  242. Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059PubMedCrossRefGoogle Scholar
  243. Swedlund B, Vasil IK (1985) Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum (L.) K. Schum. Theor Appl Genet 69:575–581CrossRefGoogle Scholar
  244. Szarka B, Gonter I, Molnar-Lang M, Morocz S, Dudits D (2002) Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants. Theor Appl Genet 105:1–7PubMedCrossRefGoogle Scholar
  245. Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320CrossRefGoogle Scholar
  246. Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci USA 89:2600–2604PubMedCrossRefGoogle Scholar
  247. Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510PubMedCrossRefGoogle Scholar
  248. Taylor MG, Vasil V, Vasil IK (1993) Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize ubiquitin-based plasmid pAHC25. Plant Cell Rep 12:491–495Google Scholar
  249. Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844PubMedCrossRefGoogle Scholar
  250. The Arabidospsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  251. Tosi P, Masci S, Giovangrossi A, D’Ovidio R, Bekes F, Larroque O, Napier J, Shewry P (2005) Modification of the low molecular weight (LMW) glutenin composition of transgenic durum wheat: effects on glutenin polymer size and glulten functionality. Mol Breed 16:113–126CrossRefGoogle Scholar
  252. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, Zn and Fe content in wheat. Science 314:1298–1301PubMedCrossRefGoogle Scholar
  253. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T, Hsing YC, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698PubMedCrossRefGoogle Scholar
  254. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122PubMedGoogle Scholar
  255. Uthayakumaran S, Lukow OM, Jordan MC, Cloutier S (2003) Development of genetically modified wheat to assess its dough functional properties. Mol Breed 11:249–258CrossRefGoogle Scholar
  256. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630PubMedCrossRefGoogle Scholar
  257. Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in plant breeding. Trends Biotechnol 24:490–499PubMedCrossRefGoogle Scholar
  258. Vasil IK (1987) Developing cell and tissue culture systems for the improvement of cereal and grass crops. J Plant Physiol 128:193–218Google Scholar
  259. Vasil IK (1996) Phosphinothricin-resistant crops. In: Duke SO (ed) Herbicide-resistant crops. CRC Press, Boca Raton, pp 85–91Google Scholar
  260. Vasil IK (ed) (1999) Advances in cellular and molecular biology of plants. Molecular improvement of cereal crops. Kluwer, Dordrecht, vol 5Google Scholar
  261. Vasil IK (2002) The wanderings of a botanist. In Vitro Cell Dev Biol Plant 38:383–395CrossRefGoogle Scholar
  262. Vasil IK (2003) The science and politics of plant biotechnology—a personal perspective. Nat Biotechnol 21:849–851PubMedCrossRefGoogle Scholar
  263. Vasil IK (2005a) The story of transgenic cereals: the challenge, the debate, and the solution—a historical perspective. In Vitro Cell Dev Biol Plant 41:577–583CrossRefGoogle Scholar
  264. Vasil IK (2005b) Tissue cultures of maize. Maydica 50:361–365Google Scholar
  265. Vasil IK, Anderson OD (1997) Genetic engineering of wheat gluten. Trends Plant Sci 2:292–297CrossRefGoogle Scholar
  266. Vasil IK, Vasil V (1992) Advances in cereal protoplast research. Physiol Plant 85:279–283CrossRefGoogle Scholar
  267. Vasil IK, Vasil V (1999) Transgenic cereals—Triticum aestivum (wheat). In: Vasil IK (ed) Advances in cellular and molecular biology of plants. Molecular improvement of cereal crops. Kluwer, Dordrecht, vol 5, pp 133–147Google Scholar
  268. Vasil IK, Vasil V (2006) Transformation of wheat via particle bombardment, 2nd edn. In: Loyola-Vargas VM, Vazquez-Flota F (eds) Methods in molecular biology: plant cell culture protocols. Humana Press, Totowa, vol 318, pp 273–283Google Scholar
  269. Vasil V, Ferl RJ, Vasil IK (1988) Somatic hybridization in the Gramineae: Triticum monococcum L. (Einkorn) + Pennisetum americanum (L.) K. Schum. (Pearl millet). J Plant Physiol 132:160–163Google Scholar
  270. Vasil V, Redway F, Vasil IK (1990) Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L.). Biotechnology 8:429–434CrossRefGoogle Scholar
  271. Vasil V, Brown SM, Re D, Fromm ME, Vasil IK (1991) Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Biotechnology 9:743–747CrossRefGoogle Scholar
  272. Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogneic callus. Biotechnology 10:667–674CrossRefGoogle Scholar
  273. Vasil V, Srivastava V, Castillo AM, Fromm ME, Vasil IK (1993) Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Biotechnology 11:1553–1558CrossRefGoogle Scholar
  274. Vasil IK, Bean S, Zhao J, McCluskey P, Lookhart G, Zhao H, Altpeter F, Vasil V (2001) Evaluation of baking properties and gluten protein composition of field grown transgenic wheat lines expressing high molecular weight glutenin gene 1Ax1. J Plant Physiol 158:521–528CrossRefGoogle Scholar
  275. Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:123–129PubMedCrossRefGoogle Scholar
  276. Wang YC, Klein TM, Fromm M, Cao J, Sanford JC, Wu R (1988) Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol Biol 11:433–439CrossRefGoogle Scholar
  277. Wang Y, Xue Y, Li J (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10:611–614CrossRefGoogle Scholar
  278. Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102:1077–1084PubMedGoogle Scholar
  279. Weir B, Gu X, Wang M, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807–818Google Scholar
  280. White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593PubMedCrossRefGoogle Scholar
  281. Wrigley CW (1996) Giant proteins with flour power. Nature 381:738–739PubMedCrossRefGoogle Scholar
  282. Wu H, Sparks C, Amoah B, Jones HD (2003a) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668Google Scholar
  283. Wu XR, Zhi HC, Folk WR (2003b) Enrichment of cereal protein lysine content by altered tRNAlys coding during protein synthesis. Plant Biotechnol J 1:187–194CrossRefGoogle Scholar
  284. Wu Y, Chen Q, Chen M, Chen J, Wang X (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci 169:65–73CrossRefGoogle Scholar
  285. Wu H, Sparks CA, Jones HD (2006) Characterization of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breed 18:195–208CrossRefGoogle Scholar
  286. Xie D, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399PubMedCrossRefGoogle Scholar
  287. Xu K, Xia X, Fukao T, Canlas P, Maghirant-Rodriguez R, Heuer S, Ismail AM, Bailey- Sevres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708PubMedCrossRefGoogle Scholar
  288. Xue Z, Zhi D, Xue G, Zhang H, Zhao Y, Xia G (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859CrossRefGoogle Scholar
  289. Yahiaoui N, Brunner S, Keller B (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J 47:85–98PubMedCrossRefGoogle Scholar
  290. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620PubMedCrossRefGoogle Scholar
  291. Yan L, Loukoianov A, Tranquilli G, Helquera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268PubMedCrossRefGoogle Scholar
  292. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644PubMedCrossRefGoogle Scholar
  293. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586PubMedCrossRefGoogle Scholar
  294. Yang M, He DD, Scott KJ (1993) Plant regeneration from protoplasts of durum wheat (Triticum durum Desf. Cv. D6962). Plant Cell Rep 12:320–323CrossRefGoogle Scholar
  295. Yang J, Bai GH, Shaner GE (2005) Novel quantitative trait loci (QTL) for Fusarium head blight resistance in wheat cultivar Chokwang. Theor Appl Genet 111:1571–1579PubMedCrossRefGoogle Scholar
  296. Ye X, Al-Babili S, Klotti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305PubMedCrossRefGoogle Scholar
  297. Yu J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  298. Zambryski P, Joos H, Genetello C, Leemans J, van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150PubMedGoogle Scholar
  299. Zhang L, French R, Langenberg WG, Mitra A (2001) Accumulation of barley stripe mosaic virus is significantly reduced in wheat plants expressing a bacterial ribonuclease. Transgenic Res 10:13–19PubMedCrossRefGoogle Scholar
  300. Zhao T, Zhao S, Chen H, Zhao Q, Hu Z, Hou B, Xia G (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199–1204PubMedCrossRefGoogle Scholar
  301. Zhou A, Xia G (2005) Introgression of the Haynaldia villosa genome into γ-ray-induced asymmetric somatic hybrids of wheat. Plant Cell Rep 24:289–296PubMedCrossRefGoogle Scholar
  302. Zhou H, Stiff CM, Konzak CF (1993) Stably transformed callus of wheat by electroporation-induced direct gene transfer. Plant Cell Rep 12:612–616CrossRefGoogle Scholar
  303. Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, Pajeau ME, Brown SM, Santino CG, Fry JF (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep 15:159–163Google Scholar
  304. Zhou H, Berg JD, Blank SE, Chay CA, Chen G, Eskelen SR, Fry JE, Hoi S, Hu T, Isakson PJ, Lawton MB, Metz SG, Rempel CB, Ryerson DK, Sansone AP, Shook AL, Starke RJ, Tichota JM, Valenti SA (2003) Field efficacy assessment of transgenic Roundup Ready wheat. Crop Sci 43:1072–1075CrossRefGoogle Scholar
  305. Zhou L, Bai G, Ma H, Carver BF (2007) Quantitative trait loci for aluminum resistance in wheat. Mol Breed 19:153–161CrossRefGoogle Scholar
  306. Zilberstein A, Schuster S, Flaishman M, Pnini-Cohen S, Koncz C, Mass C, Schell J, Eyal J (1994) Stable transformation of spring wheat cultivars. In: 4th International Congress Plant Mol Biol, Amsterdam (Abstract 2013)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations