Plant Cell Reports

, Volume 26, Issue 7, pp 1025–1033 | Cite as

Stable transformation and long-term maintenance of transgenic Taxus cell suspension cultures

  • Raymond E. B. Ketchum
  • Lea Wherland
  • Rodney B. Croteau
Genetic Transformation and Hybridization


A cell line of Taxus cuspidata has been transformed with wild-type Agrobacterium rhizogenes ATCC strain 15834 containing binary vector pCAMBIA1301 and, separately, with A. tumefaciens strain EHA105 containing binary vector pCAMBIA1305.2. Additionally, a cell line of T. chinensis has been transformed with wild-type A. rhizogenes ATCC strain 25818 containing binary vector pCAMBIA1301. The two transgenic T. cuspidata cell lines have been maintained in culture for more than 20 months, and the transgenic T. chinensis cell line for more than 9 months, with no loss of reporter gene expression or antibiotic resistance. The introduced genes had no discernable effect on growth or Taxol production in the transgenic cell lines when compared to the parent control. The methods for transforming non-embryogenic Taxus suspension cultures are described.


Taxus Taxol Paclitaxel Agrobacterium Transformation Cell suspension culture 







Cauliflower mosaic virus 35S promoter


High performance liquid chromatography coupled mass spectroscopy



This investigation was supported by U.S. National Institutes of Health grant CA-55254, and by McIntire-Stennis Project 0967 from the Washington State University Agricultural Research Center. The authors wish to thank James Green and Carina Ng for technical assistance and Mark Wildung for insightful discussions.


  1. Castle LA, Morris RO (1994) Transient expression assays using GUS constructs and fluorometric detection for analysis of T-DNA transfers. In: Gelvin S, Schilperoot R (eds) Plant molecular biology manual, 2nd edn. Kluwer, Dordrecht, B5, pp 1–16Google Scholar
  2. Chen P-Y, Wang C-K, Soong S-C, To K-Y (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breed 11:287–293 doi:10.1023/A:1023475710642CrossRefGoogle Scholar
  3. Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97. doi:10.1007/s11101-005-3748-2CrossRefGoogle Scholar
  4. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807. doi 10.1073/pnas.80.15.4803PubMedCrossRefGoogle Scholar
  5. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5PubMedCrossRefGoogle Scholar
  6. Gruchalla KJ, Nawarskas JJ (2006) The paclitaxel-eluting stent in percutaneous coronary intervention: Part I: background and clinical comparison to bare metal stents. Cardiol Rev 14:88–98. doi:10.1097/01.crd.0000200895.60631.0bPubMedCrossRefGoogle Scholar
  7. Han KH, Fleming P, Walker K, Loper M, Chilton WS, Mocek U, Gordon MP, Floss HG (1994) Genetic-transformation of mature Taxus—an approach to genetically control the in-vitro production of the anticancer drug, Taxol. Plant Sci 95:187–196. doi:10.1016/0168-9452(94)90092-2CrossRefGoogle Scholar
  8. Hefner J, Rubenstein SM, Ketchum REB, Gibson DM, Williams RM, Croteau R (1996) Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5α-ol: the first oxygenation step in Taxol biosynthesis. Chem Biol 3:479–489. doi:10.1016/S1074-5521(96)90096-4PubMedCrossRefGoogle Scholar
  9. Hezari M, Ketchum RE, Gibson DM, Croteau R (1997) Taxol production and taxadiene synthase activity in Taxus canadensis cell suspension cultures. Arch Biochem Biophys 337:185–190. doi:10.1006/abbi.1996.9772PubMedCrossRefGoogle Scholar
  10. Holmes FA (1996) Paclitaxel combination therapy in the treatment of metastatic breast cancer: a review. Semin Oncol 23:46–56PubMedGoogle Scholar
  11. Hood EE, Gelvin SB, Melchers S, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Trans Res 2:208–218. doi: 10.1007/BF01977351CrossRefGoogle Scholar
  12. Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838. doi:10.1038/342837a0PubMedCrossRefGoogle Scholar
  13. Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus gene fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  14. Jennewein S, Rithner CD, Williams RM, Croteau R (2003) Taxoid metabolism: taxoid 14β-hydroxylase is a cytochrome P450-dependent monooxygenase. Arch Biochem Biophys 413:262–270. doi:10.1016/S0003-9861(03)00090-0PubMedCrossRefGoogle Scholar
  15. Jennewein S, Long RM, Williams RM, Croteau R (2004) Cytochrome P450 taxadiene 5alpha-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis. Chem Biol 11:379–387. doi:10.1016/j.chembiol.2004.02.022PubMedCrossRefGoogle Scholar
  16. Ketchum REB, Croteau RB (2006) The taxoid metabolome and the elucidation of the paclitaxel biosynthetic pathway in cell suspension cultures of Taxus. In: Saito K, Dixon R, Willmetzer L (eds) Biotechnology in agriculture and forestry, Springer, Berlin Heidelberg New York, 57:291–309Google Scholar
  17. Ketchum REB, Gibson DM (1996) Paclitaxel production in cell suspension cultures of Taxus. Plant Cell Tiss Org 46:9–16. doi:10.1007/BF00039691CrossRefGoogle Scholar
  18. Ketchum REB, Gibson DM, Gallo LG (1995) Media optimization for maximum biomass production in cell cultures of Pacific Yew (Taxus brevifolia Nutt). Plant Cell Tissue Organ 42:185–193. doi:10.1007/BF00034237CrossRefGoogle Scholar
  19. Ketchum REB, Gibson DM, Croteau RB, Shuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62:97–105. doi:10.1002/(SICI)1097-0290(19990105)62:1 < 97::AID-BIT11 > 3.0.CO;2-CPubMedCrossRefGoogle Scholar
  20. Ketchum REB, Rithner CD, Qiu D, Kim YS, Williams RM, Croteau RB (2003) Taxus metabolomics: methyl jasmonate preferentially induces production of taxoids oxygenated at C-13 in Taxus x media cell cultures. Phytochemistry 62:901–909. doi:10.1016/S0031-9422(02)00711-2PubMedCrossRefGoogle Scholar
  21. Kim CH, Kim KI, Chung IS (2000) Expression of modified green fluorescent protein in suspension culture of Taxus cuspidata. J Micro Biotech 10:91–94Google Scholar
  22. Koepp AE, Hezari M, Zajicek J, Stofer Vogel B, LaFever RE, Lewis NG, Croteau R (1995) Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of Taxol biosynthesis in Pacific yew. J Biol Chem 270:8686–8690. doi:10.1074/jbc.270.15.8686PubMedCrossRefGoogle Scholar
  23. Long HJ (1994) Paclitaxel (Taxol): a novel anticancer chemotherapeutic drug. Mayo Clin Proc 69:341–345PubMedGoogle Scholar
  24. Naill MC, Roberts SC (2004) Preparation of single cells from aggregated Taxus suspension cultures. Biotechnol Bioeng 86:817–826. doi:10.1002/bit.20083PubMedCrossRefGoogle Scholar
  25. Nakamura T, Ishikawa M (2006) Transformation of suspension cultures of bromegrass (Bromus inermis) by Agrobacterium tumefaciens. Plant Cell Tissue Organ 84:293–299. doi:10.1007/s11240-005-9037-3CrossRefGoogle Scholar
  26. Patel RN (1998) Tour de paclitaxel: biocatalysis. Annu Rev Microbiol 98:361–395. doi:10.1146/annurev.micro.52.1.361CrossRefGoogle Scholar
  27. Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempe J (1983) Further extension of the opine concept. Plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214. doi:10.1007/BF00330641CrossRefGoogle Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning : a laboratory manual, 2nd edn. Cold Spring Harbor, New YorkGoogle Scholar
  29. Tabata H (2004) Paclitaxel production by plant-cell-culture technology. Adv Biochem Eng Biotechnol 7:1–23. doi:10.1007/b95986Google Scholar
  30. Tian LN, Brown DCW, Webb J (2000) Transient expression of a reporter gene changes significantly during somatic embryogenesis in alfalfa. Can J Plant Sci 80:765–771Google Scholar
  31. Trick HN, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean[Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep 17:482–488. doi:10.1007/s002990050429CrossRefGoogle Scholar
  32. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell, OxfordGoogle Scholar
  33. Wildung MR, Croteau R (1996) A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271:9201–9204. doi:10.1074/jbc.271.16.9201PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Raymond E. B. Ketchum
    • 1
  • Lea Wherland
    • 1
  • Rodney B. Croteau
    • 1
  1. 1.Institute of Biological ChemistryWashington State UniversityPullmanUSA

Personalised recommendations