Skip to main content
Log in

Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Developmental variability was introduced into Withania somnifera using genetic transformation by Agrobacterium rhizogenes, with the aim of changing withasteroid production. Inoculation of W. somnifera with A. rhizogenes strains LBA 9402 and A4 produced typical transformed root lines, transformed callus lines, and rooty callus lines with simultaneous root dedifferentiation and redifferentiation. These morphologically distinct transformed lines varied in T-DNA content, growth rates, and withasteroid accumulation. All of the lines with the typical transformed root morphology contained the TL T-DNA, and 90% of them carried the TR T-DNA, irrespective of the strain used for infection. Accumulation of withaferin A was maximum (0.44% dry weight) in the transformed root line WSKHRL-1. This is the first detection of withaferin A in the roots of W. somnifera. All of the rooty callus lines induced by strain A4 contained both the TL and the TR-DNAs. In contrast, 50% of the rooty-callus lines obtained with strain LBA 9402 contained only the TR T-DNA. All the rooty callus lines accumulated both withaferin A and withanolide D. The callusing lines induced by LBA 9402 lacked the TL T-DNA genes, while all the callusing lines induced by strain A4 contained the TL DNA. Four of these callus lines produced both withaferin A (0.15–0.21% dry weight) and withanolide D (0.08–0.11% dry weight), and they grew faster than the transformed root lines. This is the first report of the presence of withasteroids in undifferentiated callus cultures of W. somnifera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham A, Kirson I, Glotter E, Lavie DA (1968) A chemotaxonomic study of Withania somnifera L dun. Phytochem 7:957–962 DOI:10.1016/S0031-9422(00)82182-2

    Article  CAS  Google Scholar 

  • Anonymous (1976) The wealth of india, a new dictionary of indian raw materials. Central Institute of Medicinal and Aromatic Research, Raw Materials X: Sp-W, Publications and Information Directorate, CSIR, New Delhi, pp 581–585

  • Baiza AM, Quiroz-Moreno A, Ruiz JA, Loyola-Vargas VM (1999) Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tissue Organ Cult 59:9–17 DOI: 10.1023/A:1006398727508

    Article  Google Scholar 

  • Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154 DOI: 10.1007/s00299-004-0815-x

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya SK, Muruganandam AV (2003) Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol Biochem Behav 75:547–552

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Satyam K, Ghoshal S (1997) Antioxidant activity of glycowithanolides from Withania somnifera. Indian J Exp Biol 35:236–239

    Google Scholar 

  • Bouchez D, Tourneur J (1991) Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25:27–39 DOI:10.1016/0147-619X(91)90004-G

    Article  PubMed  CAS  Google Scholar 

  • Budhiraja RD, Sudhir S (1987) Review of biological activity of withanolides. J Sci Ind Res 46:488–491

    CAS  Google Scholar 

  • Bulgakov VP, Khodakovskaya MV, Labetskaya NV, Chernoded GK, Zhuravlev YN (1998) The impact of plant rolC oncogene on ginsenoside production by ginseng transformed root cultures. Phytochemistry 49:1929–1934 DOI:10.1016/S0031-9422(98)00351-3

    Article  CAS  Google Scholar 

  • Cardarelli M, Spano L, Mariotti D, Mauro ML, Van Sluys MA, Constantino P (1985) Identification of the genetic locus responsible for non-plar root induction by Agrobacterium rhizogenes. Plant Mol Biol 5:385–391 DOI: 10.1007/BF00037559

    Article  CAS  Google Scholar 

  • Cardarelli M, Spanó L, Mariotti D, Mauro ML, Van Sluys MA, Constantino P (1987) The role of auxin in transformed root induction. Mol Gen Genet 208:457–463 DOI: 10.1007/BF00328139

    Article  CAS  Google Scholar 

  • Chaudhary G, Sharma U, Jagannathan NR, Gupta YK (2003) Evaluation of Withania somnifera in a middle cerebral artery occlusion model of stroke in rats. Clin Exp Pharmacol Physiol 30:399–404 DOI:10.1046/j.1440-1681.2003.03849.x

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2005) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24(1):25–35 DOI: 10.1007/s00299-004-0904-x

    Article  PubMed  CAS  Google Scholar 

  • Chopra RN, Chopra IC, Handa KL, Kapoor LD (1958) Indigenous drugs of India. U.N. Dhar and Sons, Calcutta, India, pp 436–437

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Dhulay JN (1998a) Therapeutic efficacy of Ashwagandha against experimental aspergillosis in mice. Immunopharmacol Immunotoxicol 20:191–198

    Article  Google Scholar 

  • Dhulay JN (1998b) Effect of Ashwagandha on lipid peroxidation in stress-induced animals. J Ethnopharm 60:173–178

    Article  Google Scholar 

  • Gaudin V, Vrain T, Jouanin L (1994) Bacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 32:11–29

    CAS  Google Scholar 

  • Glotter E, Kirson I, Abraham A, Lavie D (1973) Constituents of Withania somnifera Dun.-XIII The withanolides of chemotype III. Tetrahedron 29:1353–1364 DOI:10.1016/S0040-4020(01)83156-2

    Article  CAS  Google Scholar 

  • Guivarc'h A, Boccara M, Prouteau M, Chriqui D (1999) Instability of phenotype and gene expression in long-term culture of carrot hairy root clones. Plant Cell Rep 19:43–50 DOI: 10.1007/s002990050708

    Article  Google Scholar 

  • Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC (1991) The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep 10:221–224 DOI: 10.1007/BF00232562

    Article  CAS  Google Scholar 

  • Hooykaas PJJ, Klapwjik PM, Nuti MP, Schilperoort RA, Rorsch A (1977) Transfer of the A. tumefaciens Ti plasmid to avirulent Agrobacteria and Rhizobium ex planta. J Gen Microbiol 98:477–484

    Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine-type Ri palsmid and its homologies with Ti-plasmids. Plasmid 12:91–102 DOI:10.1016/0147-619X(84)90055-6

    Article  PubMed  CAS  Google Scholar 

  • Jung G, Tepfer D (1987) Use of genetic transformation by Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladona and Calystegia sepium roots. Plant Sci 50:145–151 DOI:10.1016/0168-9452(87)90151-8

    Article  CAS  Google Scholar 

  • Jung KH, Kawah SS, Choi CY, Liu JR (1995) An interchangable system of transformed root and cell suspension cultures of Catharanthus roseus for indole alkaloid production. Plant Cell Rep 15:51–54 DOI: 10.1007/BF01690252

    Article  CAS  Google Scholar 

  • Kirson I, Glotter E (1981) Recent developments in naturally occurring ergostane-type steroids – a review. J Nat Prod 44(6):633–647

    Article  CAS  Google Scholar 

  • Kirson I, Glotter E, Lavie D, Abraham A (1971) Constituents of Withania somnifera Dun. The withanolides of an Indian chemotype. J Chem Soc Commun:2032

  • Kulkarni SK, George B, Mathur R (1998) Protective effect of Withania somnifera root extract on electrographic activity in a lithium pilocarpine model of status epilepticus. Phytother Res 12:451–453

    Article  CAS  Google Scholar 

  • Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloids by transformed root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci 59:191–201 DOI:10.1016/0168-9452(89)90137-4

    Article  CAS  Google Scholar 

  • Mishra LC, Singh BB, Dagenias S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5:334–346

    PubMed  CAS  Google Scholar 

  • Moyano E, Fornalè S, Palazòn J, Cusidò RM, Bonfill M, Morales C, Piñol MT (1999) Effect of Agrobacterium rhizogenes T-DNA on alkaloid production of Solanaceae plants. Phytochemistry 52:1287–1292 DOI:10.1016/S0031-9422(99)00421-5

    Article  CAS  Google Scholar 

  • Moyano E., Jouhikainen K, Tammela P, Palazòn J, Cusidò RM, Piñol MT, Teeri TH, Oksman-Caldentey KM (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54(381):203–211 DOI:10.1093/jxb/erg014

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 159:473–497 DOI:10.1111/j.1399-3054.1962.tb08052.x

    Article  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to root: the role of the Agrobacterium rhizogenes rol genes in the formation of transformed roots. Physiol Plant 100:463–473 DOI:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nittala SS, Lavie D (1981) Chemistry and genetics of withanolides in Withania somnifera hybrids. Phytochemistry 20(12):2741–2748

    Article  CAS  Google Scholar 

  • Oksman-Caldentey K-M, Sevón N, Vanhala L, Hiltunen R (1994) Effect of nitrogen and sucrose on the primary and secondary metabolism of transformed root cultures of Hyoscyamus muticus. Plant Cell Tissue Organ Cult 38(2–3):263–272 DOI: 10.1007/BF00033886

    Article  CAS  Google Scholar 

  • Palazòn J, Altabella T, Cusidó R, Ribó M, Piñol MT (1995) Growth and tropane alkaloid production in Agrobacterium transformed roots and derived callus in Datura. Biol Plant 37:161–168

    Google Scholar 

  • Palazòn J, Cusidò RM, Gonzalo J, Bonfill M, Morales C, Piñol MT (1998) Relation between the amount of rolC gene product and indole alkaloid accumulation in Catharanthus roseus. J Plant Physiol 153:712–718

    Google Scholar 

  • Palazòn J, Cusidò RM, Riog C, Piñol MT (1997) Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production in tobacco root cultures. Plant Physiol Biochem 35:155–162

    Google Scholar 

  • Panda S, Kar A (1998) Changes in thyroid hormone concentrations after administration of Ashwagandha root extract to adult male mice. J Pharm Pharmacol 50:1065–1068

    PubMed  CAS  Google Scholar 

  • Parr AJ, Hamill JD (1987) Relationship between Agrobacterium rhizogenes transformed hairy roots and intact uninfected Nicotiana plants. Phytochemistry 26:3241–3245 DOI:10.1016/S0031-9422(00)82478-4

    Article  CAS  Google Scholar 

  • Petit A, David C, Dahl G, Ellis J, Guyon P, Casse-Delbart F, Tempe J (1983) Further extension of the opine concepts: plasmids in Agrobacterium rhizogenes co-operate for opine degradation. Mol Gen Genet 207:245–250 DOI: 10.1007/BF00326531

    Article  Google Scholar 

  • Piñol MT, Palazòn J, Serrano M (1996) Effects of Ri T-DNA from Agrobacterium rhizogenes on growth and hyoscyamine production in Datura stramonium root cultures. Bot Acta 109:133–138

    Google Scholar 

  • Ray AB, Gupta M (1994) Withasteroids, a growing group of naturally occurring steroidal lactones. In: Hertz W, Kerby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the chemistry of natural organic products, vol 63, Springer-Verlag, New York, pp 1–106

  • Ray S, Jha S (1999) Withanolide synthesis in cultures of Withania somnifera transformed with Agrobacterium tumefaciens. Plant Sci 146:1–7 DOI:10.1016/S0168-9452(99)00077-1

    Article  CAS  Google Scholar 

  • Ray S, Ghosh B, Sen S, Jha S (1996) Withanolide production by root cultures of Withania somnifera transformed with Agrobacterium rhizogenes. Planta Med 62:571–573

    Article  PubMed  CAS  Google Scholar 

  • Robins RJ, Bent FG, Rhodes MJC (1991) Studies on the biosynthesis of tropane alkaloids by Datura stramonium L. Transformed root cultures. Part 3: the relationship between morphological integrity and alkaloid biosynthesis. Planta 185:385–390 DOI: 10.1007/BF00201061

    Article  CAS  Google Scholar 

  • Roja G, Heble MR, Sipahamalani AT (1991) Tissue cultures of Withania somnifera: morphogenesis and withanolide synthesis. Phytother Res 5:185–187

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbour Press, Cold Spring Harbour, NY

  • Sevón N, Oksman-Caldentey K-M (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  Google Scholar 

  • Sharma K, Dandiya PC (1992) Withania somnifera Dunal: present status. Indian Drugs 29:247

    CAS  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121

    PubMed  CAS  Google Scholar 

  • Villaine F, Casse-Delbart F (1987) Independant induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206:17–23 DOI: 10.1007/BF00326531

    Article  Google Scholar 

  • Vitali G, Conte L, Nicoletti M (1996) Withanolide composition and in vitro culture of Italian Withania somnifera. Planta Med 62:287–288

    Article  PubMed  CAS  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    PubMed  CAS  Google Scholar 

  • Yoshikawa T, Furuya T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep 6:449–453 DOI: 10.1007/BF00272780

    CAS  Google Scholar 

  • Yu PLC, El-Olemy MM, Stohs SJ (1974) A phytochemical investigation of Withania somnifera tissue cultures. Lloydia 37:593–597

    CAS  Google Scholar 

  • Zhu ZH, Alhman A, Li XY, Wealander MW (2001) Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. J Hortic Sci Biotech 76:758–763

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Programme Coordinator, Centre of Advanced Study, Department of Botany for the facilities provided and to Mr. N. Roy for photography. Financial assistance from Indo-French Centre for the Promotion of Advanced Research (Centre Franco-Indien pour la Promotion de la Recherche Avance) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Jha.

Additional information

Communicated by P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, M., Jha, S. & Tepfer, D. Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera . Plant Cell Rep 26, 599–609 (2007). https://doi.org/10.1007/s00299-006-0260-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0260-0

Keywords

Navigation