Plant Cell Reports

, Volume 25, Issue 12, pp 1263–1274 | Cite as

Role of DREB transcription factors in abiotic and biotic stress tolerance in plants

  • Pradeep K. Agarwal
  • Parinita Agarwal
  • M. K. Reddy
  • Sudhir K. Sopory
Review

Abstract

Abiotic and biotic stresses negatively influence survival, biomass production and crop yield. Being multigenic as well as a quantitative trait, it is a challenge to understand the molecular basis of abiotic stress tolerance and to manipulate it as compared to biotic stresses. Lately, some transcription factor(s) that regulate the expression of several genes related to stress have been discovered. One such class of the transcription factors is DREB/CBF that binds to drought responsive cis-acting elements. DREBs belong to ERF family of transcription factors consisting of two subclasses, i.e. DREB1/CBF and DREB2 that are induced by cold and dehydration, respectively. The DREBs are apparently involved in biotic stress signaling pathway. It has been possible to engineer stress tolerance in transgenic plants by manipulating the expression of DREBs. This opens an excellent opportunity to develop stress tolerant crops in future. This review intends to focus on the structure, role of DREBs in plant stress signaling and the present status of their deployment in developing stress tolerant transgenic plants.

Keywords

Abiotic stress Biotic stress DREBs Transcription factor 

References

  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78PubMedCrossRefGoogle Scholar
  2. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868PubMedCrossRefGoogle Scholar
  3. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94PubMedCrossRefGoogle Scholar
  4. Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470PubMedCrossRefGoogle Scholar
  5. Barkla BJ, Vera-Estrella R, Pantoja O (1999) Towards the production of salt tolerant crops. Adv Exp Med Biol 464:77–89PubMedGoogle Scholar
  6. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434PubMedCrossRefGoogle Scholar
  7. Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97CrossRefGoogle Scholar
  8. Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Fisher R, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-eda S, Lee B-H, Michalowski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song C-P, Tanaka Y, Wang H, Zhu JK (2001) A genomic approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311CrossRefGoogle Scholar
  9. Cao ZF, Li J, Chen F, Li YQ, Zhou HM, Liu Q (2001) Effect of two conserved amino-acid residues on DREB1A function. Biochemistry 66:623–627PubMedGoogle Scholar
  10. Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951PubMedCrossRefGoogle Scholar
  11. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Toa Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574PubMedCrossRefGoogle Scholar
  12. Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38:810–822PubMedCrossRefGoogle Scholar
  13. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054PubMedCrossRefGoogle Scholar
  14. Choi H-I, Hong J-H, Ha J-O, Kang J-Y, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730PubMedCrossRefGoogle Scholar
  15. Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787PubMedCrossRefGoogle Scholar
  16. Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172PubMedCrossRefGoogle Scholar
  17. Dixon RA, Arntzen CJ (1997) Transgenic plant technology is entering the era of metabolic engineering. Trends Biotechnol 15:441–444CrossRefGoogle Scholar
  18. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37PubMedCrossRefGoogle Scholar
  19. Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETELA2 product. Cell 65:991–1002PubMedCrossRefGoogle Scholar
  20. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763PubMedCrossRefGoogle Scholar
  21. Dunwell JM (2000) Transgenic approaches to crop improvement. J Exp Bot 51:487–496PubMedCrossRefGoogle Scholar
  22. Elliot RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR (1996) ANITEGUMENTA, an APETALA2 -type gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168CrossRefGoogle Scholar
  23. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206PubMedCrossRefGoogle Scholar
  24. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319PubMedCrossRefGoogle Scholar
  25. Fowler S, Thomashow F (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690PubMedCrossRefGoogle Scholar
  26. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865PubMedCrossRefGoogle Scholar
  27. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442PubMedCrossRefGoogle Scholar
  28. Goodrich J, Carpenter R, Coen ES (1992) A common gene regulates pigmentation pattern in diverse plant species. Cell 68:955–964PubMedCrossRefGoogle Scholar
  29. Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by Pto kinase. Plant Cell 12:771–786PubMedCrossRefGoogle Scholar
  30. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648PubMedCrossRefGoogle Scholar
  31. He JX, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916PubMedCrossRefGoogle Scholar
  32. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136PubMedCrossRefGoogle Scholar
  33. Hong JP, Kim WT (2005) Isolation and functional characterization of the Ca-DREBLP1gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv Pukang). Planta 220:875–888PubMedCrossRefGoogle Scholar
  34. Horvath DP, McLarney BK, Thomashow MF (1993) Regulation of Arabidopsis thaliana L. (Heyn) Cor78 in response to low temperature. Plant Physiol 103:1047–1053PubMedCrossRefGoogle Scholar
  35. Hsieh TH, Lee JT, Charng YY, Chan MT (2002a) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626PubMedCrossRefGoogle Scholar
  36. Hsieh TS, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002b) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094PubMedCrossRefGoogle Scholar
  37. Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) The dehydration-inducible Rd17 (Cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol 115:1287–1289CrossRefGoogle Scholar
  38. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106PubMedCrossRefGoogle Scholar
  39. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917PubMedCrossRefGoogle Scholar
  40. Jakoby M, Weisshaar B, Droge- Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111PubMedCrossRefGoogle Scholar
  41. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291PubMedCrossRefGoogle Scholar
  42. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350PubMedCrossRefGoogle Scholar
  43. Klucher KM, Chow H, Reiser L, Fisher RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETELA2. Plant Cell 8:137–153PubMedCrossRefGoogle Scholar
  44. Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267PubMedCrossRefGoogle Scholar
  45. Kobayashi F, Takumi S, Kume S, Ishibashi M, Ohno R, Murai K, Nakamura C (2005) Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF- mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 56:887–895Google Scholar
  46. Kume S, Kobayashi F, Ishibashi M, Ohno R, Nakamura C, Takumi S (2005) Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst 80:185–197PubMedCrossRefGoogle Scholar
  47. Kurkela S, Borg-Franck M (1992) Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol 19:689–692PubMedCrossRefGoogle Scholar
  48. Leon-Kloosterziel KM, Keijzer CJ, Koornneef M (1994) A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 6:385–392PubMedCrossRefGoogle Scholar
  49. Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110:1355–1362PubMedCrossRefGoogle Scholar
  50. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedCrossRefGoogle Scholar
  51. Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cativelli L (2004) Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55:399–416PubMedCrossRefGoogle Scholar
  52. Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13:67–73PubMedCrossRefGoogle Scholar
  53. Mc Cue KF, Hanson AD (1990) Drought and Salt tolerance: towards understanding and application. Trends Biotechnol 8:358–362CrossRefGoogle Scholar
  54. Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–469PubMedCrossRefGoogle Scholar
  55. Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am2 in Triticum monococcum. Mol Genet Genomics 275:193–203PubMedCrossRefGoogle Scholar
  56. Moose SP, Sisco PH (1996) Glossy15, an APETAL2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027PubMedGoogle Scholar
  57. Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665PubMedCrossRefGoogle Scholar
  58. Nordin K, Heino P, Palva ET (1991) Separate signal pathways regulate the expression of low temperature-induced gene in Arabidopsis thaliana (L.) Heyn. Plant Mol Biol 16:1061–1071PubMedCrossRefGoogle Scholar
  59. Nordin K, Vahala T, Palva ET (1993) Differential expression of two related low-temperature-induced genes in Arabidopsis thaliana (L.) Heyn. Plant Mol Biol 21:641–653PubMedCrossRefGoogle Scholar
  60. Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990PubMedCrossRefGoogle Scholar
  61. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351PubMedCrossRefGoogle Scholar
  62. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182PubMedCrossRefGoogle Scholar
  63. Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETELA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081PubMedCrossRefGoogle Scholar
  64. Olsen AN, Ernst HA, Leggio LL, Skriver K (2006) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87CrossRefGoogle Scholar
  65. Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046PubMedCrossRefGoogle Scholar
  66. Pernas M, Sanchez-Mong R, Salcedo G (2000) Biotic and abiotic stresses can induce cystatin expression in chestnut. FEBS Lett 467:206–210PubMedCrossRefGoogle Scholar
  67. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factor: genome wide comparative analysis among eukaryotes. Science 290:2105–2110PubMedCrossRefGoogle Scholar
  68. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREB's, transcription factors involved in dehydration- and cold-inducible gene expression Biochem Biophys Res Commun 290:998–1009PubMedCrossRefGoogle Scholar
  69. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309PubMedCrossRefGoogle Scholar
  70. Sasaki T, Song J, Koga-Ban Y, Matsui E, Fang F, Higo H, Nagasaki H, Hori M, Miya M, Murayama-Kayano E, Takiguchi T, Takasuga A, Niki T, Ishimaru K, Ikeda H, Yamamoto Y, Mukai Y, Ohta I, Miyadera N, Havukkala I, Minobe Y (1994) Toward cataloguing all rice genes: large scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J 6:615–624PubMedCrossRefGoogle Scholar
  71. Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539PubMedCrossRefGoogle Scholar
  72. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72PubMedCrossRefGoogle Scholar
  73. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring expression profile of 7000 Arabidopsis genes under drought, cold-and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292PubMedCrossRefGoogle Scholar
  74. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003a) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930PubMedGoogle Scholar
  75. Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003b) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161PubMedGoogle Scholar
  76. Shimamura C, Ohno R, Nakamura C, Takumi S (2006) Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat. J Plant Physiol 163:213–219PubMedCrossRefGoogle Scholar
  77. Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water stress response. Plant Physiol 115:327–334PubMedCrossRefGoogle Scholar
  78. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedGoogle Scholar
  79. Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250:161–170PubMedCrossRefGoogle Scholar
  80. Skinner JS, Zitzewitz J, Szűcs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551PubMedCrossRefGoogle Scholar
  81. Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575PubMedCrossRefGoogle Scholar
  82. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040PubMedCrossRefGoogle Scholar
  83. Thomashow MF (1994) Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: Merowitz E, Somerville C (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 807–834Google Scholar
  84. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599CrossRefGoogle Scholar
  85. Timmusk S, Wagner EGH (1999) The plant growth-promoting rhizobacteria Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959PubMedGoogle Scholar
  86. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in abscisic-acid-dependent signal transduction pathway under drought and high salinity conditions. Proc Natl Acad Sci USA 97:11632–11637PubMedCrossRefGoogle Scholar
  87. Vágújfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattivelli L (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genomics 274:506–514PubMedCrossRefGoogle Scholar
  88. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefGoogle Scholar
  89. Weigel D (1995) The APETELA2 domain is related to a novel type of DNA binding domain. Plant Cell 7:388–389PubMedCrossRefGoogle Scholar
  90. Wilson K, Long D, Swinburne J, Coupland G (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETELA2. Plant Cell 8:659–671PubMedCrossRefGoogle Scholar
  91. Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–183PubMedCrossRefGoogle Scholar
  92. Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration-stress in Arabidopsis thaliana. Mol Gen Genet 238:17–25PubMedGoogle Scholar
  93. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264PubMedCrossRefGoogle Scholar
  94. Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96:6523–6528PubMedCrossRefGoogle Scholar
  95. Zhou JM, Tang X, Martin GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16:3207–3218PubMedCrossRefGoogle Scholar
  96. Zhu T, Budworth P, Han B, Brown D, Chang HS, Zou G, Wang X (2001) Toward elucidating the global expression patterns of developing Arabidopsis: parallel analysis of 8300 genes by a high-density oligonucleotide probe array. Plant Physiol Biochem 39:221–242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Pradeep K. Agarwal
    • 1
    • 3
  • Parinita Agarwal
    • 1
    • 2
  • M. K. Reddy
    • 1
  • Sudhir K. Sopory
    • 1
  1. 1.International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.Department of Life ScienceBhavnagar UniversityBhavnagarIndia
  3. 3.Central Salt and Marine Chemicals Research InstituteBhavnagarIndia

Personalised recommendations