Plant Cell Reports

, Volume 25, Issue 12, pp 1325–1335 | Cite as

Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules

  • Inger Bæksted Holme
  • Henrik Brinch-Pedersen
  • Mette Lange
  • Preben Bach Holm
Genetic Transformation and Hybridization


We report on a novel transformation procedure for barley by Agrobacterium infection of in vitro cultured ovules. Ovules of the cultivar Golden Promise were isolated a few hours after pollination and infected with the Agrobacterium tumefaciens strain AGL0 carrying the binary vector pVec8-GFP. The vector harboured a hygromycin resistance gene and the green fluorescence protein (GFP) gene. GFP-expressing embryos were isolated from the ovules, regenerated to plants and investigated by Southern blot analysis. Transformation frequencies amounted to 3.1% with hygromycin selection and 0.8% without selection. Mendelian inheritance and stable expression of the GFP gene was confirmed in 18 independent lines over two generations. We conclude that the described technique allows for the rapid and direct generation of high quality transgenic plants.


Agrobacterium tumefaciens Barley ovule culture GFP-expression Transformation Zygote 





Green fluorescence protein

GFP+ embryo

Embryo expressing GFP

GFP embryo

Embryo not expressing GFP


Nopaline synthetase



The authors thank Ole Bråd Hansen and Lis Bagnkop Holte for skillful technical assistance. Michael Hansen, Department of Plant Biology, the Royal Veterinary and Agricultural University, Denmark, is thanked for performing the confocal microscopy. This work was funded by a grant from the Danish Research Council.


  1. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene-transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris, Life Sci 316:1194–1199Google Scholar
  2. Bechtold N, Jaudeau B, Jolivet S, Maba B, Vezon D, Voisin R, Pelletier G (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155:1875–1887PubMedGoogle Scholar
  3. Bennett MD, Smith JB, Barclay I (1975) Early seed development in Triticeae. Phios T Roy Soc B 272:199–226Google Scholar
  4. Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547PubMedCrossRefGoogle Scholar
  5. Bregitzer P, Halbert SE, Lemaux PG (1998) Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet 96:421–425. DOI: 10.1007/s001220050758CrossRefGoogle Scholar
  6. Bregitzer P, Tonks D (2003) Inheritance and expression of transgenes in barley. Crop Sci 43:4–12CrossRefGoogle Scholar
  7. Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206. DOI: 10.1023/A:1009690730620CrossRefGoogle Scholar
  8. Cheng M, Lowe BA, Spencer TM, Ye XD, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev-Plant 40:31–45. DOI: 10.1079/IVP2003501CrossRefGoogle Scholar
  9. Cho MJ, Jiang W, Lemaux PG (1998) Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci 138:229–244. DOI: 10.1016/S0165-1781(98)00122-XCrossRefGoogle Scholar
  10. Choi HW, Lemaux PG, Cho MJ (2000) Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants. Crop Sci 40:524–533CrossRefGoogle Scholar
  11. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. DOI: 10.1046/j.1365-313x.1998.00343.xPubMedCrossRefGoogle Scholar
  12. Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method–plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res 10:363–371. DOI: 10.1023/A:1016600517293PubMedCrossRefGoogle Scholar
  13. Engell K (1989) Embryology of barley–time course and analysis of controlled fertilization and early embryo formation based on serial sections. Nord J Bot 9:265–280Google Scholar
  14. Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roue C (1995) Regeneration of the barley zygote in ovule culture. Sex Plant Reprod 8:49–59CrossRefGoogle Scholar
  15. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188. DOI: 10.1023/A:1006423110134PubMedCrossRefGoogle Scholar
  16. Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110CrossRefGoogle Scholar
  17. Labra M, Vannini C, Grassi F, Bracale M, Balsemin M, Basso B, Sala F (2004) Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip. Theor Appl Genet 109:1512–1518. DOI: 10.1007/s00122-004-1773-yPubMedCrossRefGoogle Scholar
  18. Lange M, Vincze E, Møller MG, Holm PB (2006) Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobaterium-mediated transformation. Plant Cell Rep (in press)Google Scholar
  19. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technol 9:963–967CrossRefGoogle Scholar
  20. Liu F, Cao MQ, Tao L, Li Y, Robaglia C, Tourneur C (1998) In planta transformation of Pakchoi (Brassica campestris L.) by infiltration of adult plants with Agrobacterium. Acta Hortic 467:187–193Google Scholar
  21. Mantis NJ, Winans SC (1992) The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli. J Bacteriol 174:1189–1196PubMedGoogle Scholar
  22. Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202. DOI: 10.1023/A:1011333321893CrossRefGoogle Scholar
  23. Mogensen HL, Holm PB (1995) Dynamics of nuclear DNA quantities during zygote development in barley. Plant Cell 7:487–494PubMedCrossRefGoogle Scholar
  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  25. Murray F, Brettell R, Matthews P, Bishop D, Jacobsen J (2004) Comparison of Agrobacterium mediated transformation of four barley cultivars using the GFP and GUS reporter genes. Plant Cell Rep 22:397–402. DOI: 10.1007/s00299-003-0704-8PubMedCrossRefGoogle Scholar
  26. Narasimhulu SB, Deng X, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8:873–886PubMedCrossRefGoogle Scholar
  27. Srivastava V, Ow DW (2004) Marker-free site-specific gene integration in plants. Trends Biotechnol 22:627–629. DOI: 10.1016/j.tibtech.2004.10.002PubMedCrossRefGoogle Scholar
  28. Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629CrossRefGoogle Scholar
  29. Stuitje AR, Verbree EC, van der Linden KH, Mietkiewska EM, Nap JP, Kneppers TJA (2003) Seed-expressed fluorescent proteins as versatile tools for easy (co)transformation and high-throughput functional genomics in Arabidopsis. Plant Biotechnol J 1:301–309. DOI: 10.1046/j.1467-7652.2003.00028.xCrossRefPubMedGoogle Scholar
  30. Sykes LC, Matthysse AG (1986) Time required for tumor induction by Agrobacterium tumefaciens. Appl Environ Microbiol 52:597–598PubMedGoogle Scholar
  31. Tingay S, McElroy D. Kalla R, Fieg S, Wang MB, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376. DOI: 10.1046/j.1365-313X.1997.11061369.xCrossRefGoogle Scholar
  32. Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789. DOI: 10.1007/s00299-004-0892-xPubMedCrossRefGoogle Scholar
  33. Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541. DOI: 10.1046/j.1365-313x.2000.00757.xPubMedCrossRefGoogle Scholar
  34. Trifonova A, Madsen S, Olesen A (2001) Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci 161:871–880. DOI: 10.1016/S0168-9452(01)00479-4CrossRefGoogle Scholar
  35. Virts EL, Gelvin SB (1985) Analysis of transfer of tumor-inducing plasmids from Agrobacterium tumefaciens to Petunia protoplasts. J Bacteriol 16:1030–1038Google Scholar
  36. Wang WC, Menon G, Hansen G (2003) Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep 22:274–281. DOI: 10.1007/s00299-003-0691-9PubMedCrossRefGoogle Scholar
  37. Ye GN, Stone D, Pang SZ, Creely W, Gonzalez K, Hinchee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249–257. DOI: 10.1046/j.1365-313X.1999.00520.xPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Inger Bæksted Holme
    • 1
  • Henrik Brinch-Pedersen
    • 1
  • Mette Lange
    • 1
  • Preben Bach Holm
    • 1
  1. 1.Department of Genetics and BiotechnologyDanish Institute of Agricultural Sciences, Research Centre FlakkebjergSlagelseDenmark

Personalised recommendations