Plant Cell Reports

, Volume 25, Issue 10, pp 1024–1034 | Cite as

Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts

  • Bronwyn R. Frame
  • Jennifer M. McMurray
  • Tina M. Fonger
  • Marcy L. Main
  • Kyle W. Taylor
  • François J. Torney
  • Margie M. Paz
  • Kan Wang
Genetic Transformation and Hybridization


Transformation technology as a research or breeding tool to improve maize is routinely used in most industrial and some specialized public laboratories. However, transformation of many inbred lines remains a challenging task, especially when using Agrobacterium tumefaciens as the delivery method. Here we report success in generating transgenic plants and progeny from three maize inbred lines using an Agrobacterium-mediated standard binary vector system to target maize immature embryos. Eleven maize inbred lines were pre-screened for transformation frequency using N6 salts. A subset of three maize inbred lines was then systematically evaluated for frequency of post-infection embryogenic callus induction and transformation on four media regimes: N6 or MS salts in each of two distinct media backgrounds. Transgenic plants recovered from inbred lines B104, B114, and Ky21 were analyzed for transgene integration, expression, and transmission. Average transformation frequencies of 6.4% (for B104), 2.8% (for B114), and 8% (for Ky21) were achieved using MS salts. Availability of Agrobacterium-mediated maize inbred line transformation will improve future opportunities for maize genetic and functional genomic studies.


Agrobacterium tumefaciens Zea mays Inbred maize MS salts N6 salts Type I callus 


  1. Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of l-proline. Planta 164:207–214CrossRefGoogle Scholar
  2. Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet Coop Newsl 65:92–93Google Scholar
  3. Armstrong CL, Romero-Severson J, Hodges TK (1992) Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theor Appl Genet 84:755–762CrossRefGoogle Scholar
  4. Bohorova NE, Luna B, Brito RM, Huerta LD, Hoisington DA (1995) Regeneration potential of tropical, subtropical, midaltitude, and highland maize inbreds. Maydica 40:275–281Google Scholar
  5. Brettschneider R, Becker D, Lorz H (1997) Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl Genet 94:737–748CrossRefGoogle Scholar
  6. Carvalho CHS, Bohorova N, Bordallo P, Abreu LL, Valicente FH, Bressan W, Paiva E (1997) Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep 17:73–76CrossRefGoogle Scholar
  7. Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol-Plant 40:31–45CrossRefGoogle Scholar
  8. Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci Sin 18:659–668Google Scholar
  9. Close KR, Ludeman LA (1987) The effect of auxin-like plant growth regulators and osmotic regulation on induction of somatic embryogenesis from elite maize inbreds. Plant Sci 52:81–89CrossRefGoogle Scholar
  10. Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy R, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33CrossRefGoogle Scholar
  11. Deblaere R, Bytebier B, DeGreve H, Deboeck F, Schell J, van Montagu, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors fro Agrobacterium-mediate gene transfer to plants. Nucleic Acids Res 13:4777–4788PubMedCrossRefGoogle Scholar
  12. Duncan DR, Williams ME, Zehr BE, Widholm JM (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165:322–332CrossRefGoogle Scholar
  13. Elkonin LA, Pakhomova NV (2000) Influence of nitrogen and phosphorus on induction of embryogenic callus of sorghum. Plant Cell Tissue Organ Cult 61:115–123CrossRefGoogle Scholar
  14. Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton D, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22CrossRefPubMedGoogle Scholar
  15. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefPubMedGoogle Scholar
  16. Gordon-Kamm W, Dilkes BP, Lowe K, Hoerster G, Sun X, Ross M, Church L, Bunde C, Farrell J, Hill P, Maddock S, Snyder J, Sykes L, Li Z, Woo Y, Bidney D, Larkins BA (2002) Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. PNAS 99(18):11975–11980CrossRefPubMedGoogle Scholar
  17. Hallauer R, Lamkey KR, White PR (1997) Registration of five inbred lines of maize: B102, B104, B104, B105, and B106. Crop Sci 37:1405–1406CrossRefGoogle Scholar
  18. Hallauer R, Lamkey KR, White PR (2000) Registration of B110, B111, B113 and B114 inbred lines of maize. Crop Sci 40:1518–1519Google Scholar
  19. Hodges TK, Kamo KK, Imbrie CW, Becwar MR (1986) Genotype specificity of somatic embryogenesis and regeneration in maize. Nat. Biotechnol. 4:219–223CrossRefGoogle Scholar
  20. Hoekema A (1983) A plant binary vector strategy based on separation of vir and T region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180CrossRefGoogle Scholar
  21. Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301PubMedGoogle Scholar
  22. Huang X, Wei Z (2005) Successful Agrobacterium-Mediated Genetic Transformation of Maize Elite Inbred lines. Plant Cell Tissue Organ Cult 83:187–200CrossRefGoogle Scholar
  23. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea Mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750CrossRefPubMedGoogle Scholar
  24. Ishida Y, Saito H, Hiei Y, Komari T (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol 20(1):57–66Google Scholar
  25. Jefferson RA (1987) Assaying chimeric genes in plants. The gus gene fusion system. Plant Mol Biol Rep 5:287–405CrossRefGoogle Scholar
  26. Linsmaier E, Skoog F (1965) Organic growth factor requirements of tobacco tissue culture. Physiol Plant 18:100–127CrossRefGoogle Scholar
  27. Lowe BA, Way MM, Kumpf JM, Rout JR, Johnson R, Warner D, Armstrong TM, Chomet PS (2004) Development of a transformation competent elite maize line by marker assisted breeding. In: Abstract P-2030, 2004 World Congress on in vitro biology, 50Google Scholar
  28. Lu C, Vasil V, Vasil IK (1983) Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theor Appl Genet 66:285–289CrossRefGoogle Scholar
  29. Lupotto E, Conti E, Reali A, Lanzanova C, Baldoni E, Allegri L (2004) Improving in vitro culture and regeneration conditions for Agrobacterium-mediated maize transformation. Maydica 49:21–29Google Scholar
  30. McCain JW, Kamo KK, Hodges TK (1988) Characterization of somatic embryo development and plant regeneration from friable maize callus cultures. Bot Gaz 149(1):16–20CrossRefGoogle Scholar
  31. Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Annu Rev Plant Physiol Plant Mol Biol 47:23–48CrossRefPubMedGoogle Scholar
  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  33. Negrotto D, Jolley M, Beer S, Wench AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803CrossRefGoogle Scholar
  34. Nishimura A, Ashikari M, Lin S, Takashi T, Angeles ER, Yamamoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. PNAS 102(33):11940–11944CrossRefPubMedGoogle Scholar
  35. Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179CrossRefGoogle Scholar
  36. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018PubMedCrossRefGoogle Scholar
  37. Sambrook J, Fritsch EF (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NewYorkGoogle Scholar
  38. Shou H, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208CrossRefGoogle Scholar
  39. Snedecor G, Cochran W (1980) Statistical methods. Iowa State University Press, IowaGoogle Scholar
  40. Songstad DD, Armstrong CL, Petersen WL (1991) AgNO3 increased Type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep 9:699–702CrossRefGoogle Scholar
  41. Songstad DD, Armstrong CL, Petersen WL, Hairston B, Hinchee MAW (1996) Production of transgenic maize plants and progeny by bombardment of Hi II immature embryos. In Vitro Cell Dev Biol-Plant 32:179–183CrossRefGoogle Scholar
  42. Tomes DT, Smith OS (1985) The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theor Appl Genet 70:505–509CrossRefGoogle Scholar
  43. Vain P, Yean H, Flament P (1989) Enhancement of production and regeneration of embryogenic Type II callus in Zea mays L. by AgNO3. Plant Cell Tissue Organ Cult 18:143–151CrossRefGoogle Scholar
  44. Wan Y, Widholm JM, Lemaux PG (1995) Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196:7–14CrossRefGoogle Scholar
  45. Wang K, Frame B, Marcell L (2003) Genetic transformation of maize. In: Jaiwal PK, Singh RP (eds) Plant genetic engineering, vol 2. Improvement of food crops. Sci Tech Publishing LLC, Houston, pp 175–217Google Scholar
  46. Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred DA, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T 0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newsl 72:34–37Google Scholar
  47. Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798CrossRefPubMedGoogle Scholar
  48. Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Shroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333CrossRefGoogle Scholar
  49. Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet G 107:1157–1168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bronwyn R. Frame
    • 1
  • Jennifer M. McMurray
    • 1
  • Tina M. Fonger
    • 1
  • Marcy L. Main
    • 1
  • Kyle W. Taylor
    • 1
  • François J. Torney
    • 1
  • Margie M. Paz
    • 1
  • Kan Wang
    • 1
  1. 1.Department of AgronomyIowa State UniversityAmesUSA

Personalised recommendations