Advertisement

Plant Cell Reports

, Volume 24, Issue 11, pp 683–690 | Cite as

Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis

  • Shuqing CaoEmail author
  • Ming Ye
  • Shaotong Jiang
Biotic and Abiotic Stress

Abstract

The Arabidopsis GIGANTEA (GI) gene has been shown to regulate several developmental processes, including photoperiod-mediated flowering, phytochrome B signaling, circadian clock, and carbohydrate metabolism. However, little is known about the role of GI gene in mediating the cold stress response. Here, we show that GI gene is involved in mediating the cold stress response. GI gene was induced by cold stress, but not by salt, mannitol, and abscisic acid. Moreover, gi-3 plants showed an increased sensitivity to freezing stress. However, no significant differences were detected in the transcript levels of CBF genes CBF1, CBF2, and CBF3 as well as their targeted genes RD29A, COR15A, KIN1, and KIN2 between wild-type and gi-3 plants in response to cold stress. These results suggest that GI gene positively regulates freezing tolerance via a CBF-independent pathway. In addition, intermittent cold treatments had a greater effect on flowering time in gi-3 plants than that in wild-type plants, suggesting that there may be a link between flowering time and cold stress response through GI in Arabidopsis.

Keywords

CBF-independent pathway Cold stress response Flowering time GIGANTEA gene 

Notes

Acknowledgements

We thank Peng Wei and Yangqiu Song for their technical assistances. This work was supported by a grant from Hefei University of Technology to SQC.

References

  1. Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin CT, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93:13404–13409CrossRefPubMedGoogle Scholar
  2. Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana COR15a has cis-acting elements that confer cold-regulated, drought-regulated, and ABA-regulated gene expression. Plant Mol Biol 24:701–713CrossRefPubMedGoogle Scholar
  3. Beator J, Pötter E, Kloppstech K (1992) Coordinated circadian regulation of mRNA levels for light-regulated genes and of the capacity for accumulation of chlorophyll protein complexes. Plant Physiol 100:1780–1786PubMedGoogle Scholar
  4. Blazquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33:168–171CrossRefPubMedGoogle Scholar
  5. Browse J, Xin Z (2001) Temperature sensing and cold acclimation. Curr Opin Plant Biol 4:241–246CrossRefPubMedGoogle Scholar
  6. Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248CrossRefPubMedGoogle Scholar
  7. Eimert K, Wang SM, Lue WL, Chen J (1995) Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7:1703–1712CrossRefPubMedGoogle Scholar
  8. Estelle MA, Somerville CR (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 206:200–206CrossRefGoogle Scholar
  9. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690CrossRefPubMedGoogle Scholar
  10. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688CrossRefPubMedGoogle Scholar
  11. Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968CrossRefPubMedGoogle Scholar
  12. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442CrossRefPubMedGoogle Scholar
  13. Guy CL (1990) Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223Google Scholar
  14. Heintzen C, Melzer S, Fischer R, Kappeler S, Apel K, Staiger D (1994) A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. Plant J 5:799–813CrossRefPubMedGoogle Scholar
  15. Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA 97:9789–9794CrossRefPubMedGoogle Scholar
  16. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106CrossRefPubMedGoogle Scholar
  17. Kim HJ, Hyun Y, Park JY, Park MJ, Park MY, Kim MD, Kim HJ, Lee MH, Moon J, Lee I, Kim J (2004) A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 36:167–171CrossRefPubMedGoogle Scholar
  18. Kloppstech K, Otto B, Sierralta W (1991) Cyclic temperature treatments of dark-grown pea seedlings induce a rise in specific transcript levels of light-regulated genes related to photomorphogenesis. Mol Gen Genet 225:468–473CrossRefPubMedGoogle Scholar
  19. Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503CrossRefPubMedGoogle Scholar
  20. Knight H, Veale EL, Warren GJ, Knight MR (1999) The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell 11:875–886CrossRefPubMedGoogle Scholar
  21. Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66CrossRefPubMedGoogle Scholar
  22. Kreps J, Wu Y, Chang HS, Zhu T, Wang X, Harper J (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141CrossRefPubMedGoogle Scholar
  23. Kurepa J, Smalle J, van Montagu M, Inez D (1998) Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J 14:759–764CrossRefPubMedGoogle Scholar
  24. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406CrossRefPubMedGoogle Scholar
  25. Llorente F, Oliveros JC, Martinez-Zapater JM, Salinas J (2000) A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta 211:648–655CrossRefPubMedGoogle Scholar
  26. Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 83:761–767PubMedCrossRefGoogle Scholar
  27. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993CrossRefPubMedGoogle Scholar
  28. McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408:716–720CrossRefPubMedGoogle Scholar
  29. Miquel M, James D, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA 90:6208–6212PubMedCrossRefGoogle Scholar
  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  31. Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990CrossRefPubMedGoogle Scholar
  32. Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582PubMedCrossRefGoogle Scholar
  33. Provart NJ, Gil P, Chen W, Han B, Chang HS, Wang X, Zhu T (2003) Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol 132:893–906CrossRefPubMedGoogle Scholar
  34. Ristic Z, Ashworth EN (1993) Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L (Heynh) cv. Columbia during rapid cold acclimation. Protoplasma 172:111–123Google Scholar
  35. Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré I, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229CrossRefPubMedGoogle Scholar
  36. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cdna microarray. Plant Cell 13:61–72CrossRefPubMedGoogle Scholar
  37. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292CrossRefPubMedGoogle Scholar
  38. Shen W, Kazuyoshi N, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431–439CrossRefPubMedGoogle Scholar
  39. Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575CrossRefPubMedGoogle Scholar
  40. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040CrossRefPubMedGoogle Scholar
  41. Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29:1524–1533CrossRefPubMedGoogle Scholar
  42. Strand A, Hurry V, Gustafsson P, Gardestrom P (1997) Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J 12:605–614CrossRefPubMedGoogle Scholar
  43. Tabaei-Aghdaei SR, Pearce RS, Harrison P (2003) Sugars regulate cold-induced gene expression and freezing-tolerance in barley cell cultures. J Exp Bot 54:1565–1575CrossRefPubMedGoogle Scholar
  44. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599CrossRefPubMedGoogle Scholar
  45. Thomashow MF (2001) So what's new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93CrossRefGoogle Scholar
  46. Uemura M, Warren G, Steponkus PL (2003) Freezing sensitivity in the sfr4 mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiol 131:1800–1807CrossRefPubMedGoogle Scholar
  47. Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626–638CrossRefPubMedGoogle Scholar
  48. Xin Z, Browse J (1998) eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA 95:7799–7804CrossRefPubMedGoogle Scholar
  49. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264CrossRefPubMedGoogle Scholar
  50. Zhu J, Shi H, Lee BH, Damsz B, Cheng S, Stirm V, Zhu JK, Hasegawa PM, Bressan RA (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA 101:9873–9878CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.School of Biotechnology and Food EngineeringHefei University of TechnologyHefeiPeople's Republic of China

Personalised recommendations