Plant Cell Reports

, Volume 25, Issue 4, pp 265–273

Efficient in vitro regeneration of fertile plants from corm explants of Hypoxis hemerocallidea landrace Gaza—The “African Potato”

  • Yves Assoumou Ndong
  • Anne Wadouachi
  • Brigitte S. Sangwan-Norreel
  • Rajbir S. Sangwan
Cell Biology and Morphogenesis

Abstract

We present efficient protocols for the regeneration of fertile plants from corm explants of Hypoxis hemerocallidea Fisch. & C. A. Mey. landrace Gaza, either by direct multiple shoot formation or via shoot organogenesis from corm-derived calluses. The regeneration efficiency depended on plant growth regulator concentrations and combinations. Multiple direct shoot formation with high frequency (100% with 5–8 shoots/explant) was obtained on a basal medium (BM) supplemented with 3 mg/l kinetin (BM1). However, efficient indirect regeneration occurred when corm explants were first plated on callus induction medium (BM2) with high kinetin (3 mg/l) and naphthalene acetic acid (NAA 1 mg/l), and then transferred to shoot inducing medium (BM3) containing BA (1.5 mg/l) and NAA (0.5 mg/l). Shoot regeneration frequency was 100% and 30–35 shoots per explant were obtained. The regenerated shoots were rooted on a root inducing medium (BM4) containing NAA (0.1 mg/l). Rooted plantlets were transferred to the greenhouse. The regenerants were morphologically normal and fertile. Flow cytometric analyses and chloroplast counts of guard cells suggested that the regenerants were diploid. Efficient cloning protocols described here, have the potential not only to substantially reduce the pressure on natural populations but also for wider biotechnological applications of Hypoxis hemerocallidea—an endangered medicinal plant.

Keywords

Hypoxis hemerocallidea—The African Potato Cytokinin Adventitious shoot formation Direct organogenesis 

Abbreviations

BA

N-6-benzylaminopurine

CIM

Callus inducing medium

2, 4-D

2, 4-Dichlorophenoxyacetic acid

Kin

Kinetin

MS

Murashige and Skoog medium

NAA

Naphthaleneacetic acid

PGRs

Plant growth regulators

SIM

Shoot inducing medium

TIBA

2, 3, 5-Triiodobenzoic acid

References

  1. Ahloowalia BS (1983) Spectrum of variation in somaclones of triploid ryegrass. Crop Science 23:1141–1147CrossRefGoogle Scholar
  2. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9:208–218CrossRefGoogle Scholar
  3. Appleton MR and Van Staden J (1995) Micropropagation of some South African Hypoxis species with medicinal and horticultural potential. Acta Hort (ISHS) 420:75–77Google Scholar
  4. Beaujean A, Sangwan RS, Lecardonnel A, Sangwan-Norreel BS (1998) Agro bacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. Journal of Experimental Botany 49:1589–1595CrossRefGoogle Scholar
  5. Bouic, PJD (1998) Sterols and sterolins—the natural, non-toxic immunomodulators and their role in the control of rheumatoid arthritis. Health Talk 48–49Google Scholar
  6. Bayliss MW (1980) Chromosomal variation in plant tissues in culture. International Review of Cytology Supplement 11A:113–144Google Scholar
  7. Brown SC, Devaux P, Marie D, Bergounioux C, Petit PX (1991) Cytometrie de flux: application à l’analyse de la ploidie chez les végétaux. Biofutur 105:2–16Google Scholar
  8. Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Developmental Biology 95:288–293PubMedCrossRefGoogle Scholar
  9. Detrez C, Sangwan RS, Sangwan-Norreel BS (1989) Phenotypic and karyotypic status of Beta vulgaris plants regenerated from direct organogenesis in petiole culture. Theoretical and Applied Genetics 77:462–468CrossRefGoogle Scholar
  10. Dhanalakshmi R, Prasad TG, Udayakumar M (2003) Is auxin a diffusible signal mediating abscission of recessive sinks? Plant Science 164:689–696CrossRefGoogle Scholar
  11. Ducreux L, Morris WL, Taylor MA, Millam S (2005) Agrobacterium-mediated transformation of Solanum phureja. Plant Cell Reportsorts 24:10–14CrossRefGoogle Scholar
  12. Drewes S, Horn M (2004) The African Potato Hypoxis hemerocallidea (Hypoxidaceae) Myth or Miracle muthi, Available at http:/www.akita.co.za/mnp/africanpotato.htmGoogle Scholar
  13. Geier T (1991) Chromosome variability in callus produced plants. In: Harding J, Singh F, Mol JNM (eds): Genetics and breeding of ornamental species, Kluwer Academic Publishers, Dordrecht pp. 79–106Google Scholar
  14. Geier T, Beck A, Preil W (1992) High uniformity of plants regenerated from cytogenetically variable embryogenic suspension cultures of poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch). Plant Cell Reportsorts 11:150–154Google Scholar
  15. Godo T, Kobayashi K, Tagami T, Matsui K, Kida T (1998) In vitro propagation utilizing suspension cultures of meristematic nodular cell clumps and chromosome stability of Lilium. Scientia Horticulturae 72:193–202CrossRefGoogle Scholar
  16. Hussey G (1975) Totipotency in tissue explants and callus od some members of the Liliaceae, Iridaceae and Amaryllidaceae. Journal of Experimental Botany 26:253–262CrossRefGoogle Scholar
  17. Hussey G (1982) In vitro propagation of Narcissus. Annals of Botany 49:707–719Google Scholar
  18. Joshi M, Dhar U (2003) In vitro Propagation of Saussurea obvallata (DC.) Edgew.—an endangered ethnoreligious medicinal herb of Himalaya. Plant Cell Reports 21:933–939PubMedCrossRefGoogle Scholar
  19. Keathley DE, Scholl RL (1983) Chromosomal heterogeneity of Arabidopsis thaliana anther callus, regenerated shoots and plants. Z Pflanzenphysiol 112:247–255Google Scholar
  20. Konan NK, Sangwan RS, Sangwan-Norreel BS (1994) Efficient in vitro shoot-regeneration systems in Cassava. Plant Breeding 113:227–236CrossRefGoogle Scholar
  21. Kuijpers AM, Langens-Gerrits M (1997) Propagation of tulip in vitro. Acta Hortic. 430:321–324Google Scholar
  22. Larkin PJ, Scowcroft WR (1981) Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics 60:197–214CrossRefGoogle Scholar
  23. Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Annual Review of Plant Physiology and Plant Molecular Biology 39:413–437CrossRefGoogle Scholar
  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioasssays with tobacco tissue cultures. Physiologiaplantarum 15:473–497Google Scholar
  25. Nakano M, Sakakibara T, Suzuki S, Saito H (2000) Decrease in the regeneration potential of long-term cell suspension cultures of Lilium formosanum Wallace and its restoration by the auxin transport inhibitor, 2, 3, 5-triiodobenzoic acid. Plant Science 158:129–137PubMedCrossRefGoogle Scholar
  26. Nitsch JP, Nitsch C (1965) Néoformation de fleurs in vitro chez une espèce de jours courts. Plumbago indica L. Annales De Physiologie Vegetale 7:251–258Google Scholar
  27. Ochatt SJ, Mousset-Declas C, Rancillac M. (2000) Fertile pea plants regenerate from protoplasts when calluses have not undergone endoreduplication. Plant Science 156:177–183PubMedCrossRefGoogle Scholar
  28. Page YM, Van Staden J (1984) In vitro propagation of Hypoxis rooperi. Plant Cell Tissue Organ Culture 3:359–362CrossRefGoogle Scholar
  29. Page YM, Van Staden J (1986) In vitro propagation of Hypoxis rooperi from flower buds. South African Journal of Botany 52:261–264Google Scholar
  30. Sangwan RS, Bourgeois Y, Dubois F, Sangwan-Norreel BS (1992) In vitro regeneration of Arabidopsis thaliana from cultured zygotic embryos and analysis of regenerants. Journal of Plant Physiology 140:588–595Google Scholar
  31. Schmidt R, Willmitzer L (1988) High efficiency Agrobacterium tumefaciens mediated transformation of Arabidopsis thaliana leaf and cotyledon explants. Plant Cell Reportsorts 7:583–586CrossRefGoogle Scholar
  32. Valvekens DM, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens mediated transformation of Arabidopsis thaliana root explants using kanamycin selection. Proceedings of the National Academy of Sciences 85:5536–5540CrossRefGoogle Scholar
  33. Van Staden J, Bayley AD (1988) Hypoxis spp.: micropropagation and in vitro production of hypoxoside. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry Vol. 4. Medicinal and Aromatic Plants1. Springer Verlag, Berlin, pp. 437–447Google Scholar
  34. Van Wyk B, Gericke N (2000) People's plants. A guide to useful plants of Southern Africa. Briza Publications, PretoriaGoogle Scholar
  35. Verzar R, Petri G (1987) Medicinal-plants in Mozambique and their popular use. Journal of Ethnopharmacology 19:67–80PubMedCrossRefGoogle Scholar
  36. Vinesi P, Serafini M, Nicoletti M, Spano L, Betto P (1990) Plant regeneration and hypoxoside content in Hypoxis obtusa. Journal of Natural Products 53:196–199CrossRefGoogle Scholar
  37. Watt JM, Breyer-Brandwijk MG (1962) The medicinal and poisonous plants of Southern and Eastern Africa. 2nd Ed., E and S Livingston, Edinburgh, pp. 41Google Scholar
  38. Wawrosh C, Malla PR, Kopp B (2001) Clonal propagation of Lilium nepalense D. Don. A threatened medicinal plant of Nepal. Plant Cell Reportsorts 20:285–288CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Yves Assoumou Ndong
    • 1
  • Anne Wadouachi
    • 2
  • Brigitte S. Sangwan-Norreel
    • 1
  • Rajbir S. Sangwan
    • 1
  1. 1.Laboratoire Androgenèse et Biotechnologie EA3900Université de Picardie Jules VerneAmiensFrance
  2. 2.Laboratoire des Glucides CNRS-FRE 2779Université de Picardie Jules VerneAmiensFrance

Personalised recommendations