Advertisement

Plant Cell Reports

, Volume 25, Issue 4, pp 304–312 | Cite as

Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny

  • J. Carlos Popelka
  • Stephanie Gollasch
  • Andy Moore
  • Lisa Molvig
  • Thomas J. V. Higgins
Genetic Transformation and Hybridization

Abstract

Cowpeas are nutritious grains that provide the main source of protein, highly digestible energy and vitamins to some of the world's poorest people. The demand for cowpeas is high but yields remain critically low, largely because of insect pests. Cowpea germplasm contains little or no resistance to major insect pests and a gene technology approach to adding insect protection traits is now a high priority. We have adapted features of several legume and other transformation systems and reproducibly obtained transgenic cowpeas that obey Mendelian rules in transmitting the transgene to their progeny. Critical parameters in this transformation system include the choice of cotyledonary nodes from developing or mature seeds as explants and a tissue culture medium devoid of auxins in the early stages, but including the cytokinin BAP at low levels during shoot initiation and elongation. Addition of thiol-compounds during infection and co-culture with Agrobacterium and the choice of the bar gene for selection with phosphinothricin were also important. Transgenic cowpeas that transmit the transgenes to their progeny can be recovered at a rate of one fertile plant per thousand explants. These results pave the way for the introduction of new traits into cowpea and the first genes to be trialled will include those with potential to protect against insect pests.

Key words

Agrobacterium-mediated transformation of cowpea in vitro culture of cowpea Transgenic cowpea 

Abbreviations

PAT

phosphinothricin acetyl transferase

PPT

phosphinothricin

BAP

benzylaminopurine

GUS

β-glucuronidase

Notes

Acknowledgements

We thank HE Schroeder, D Spencer and BK Sarmah for invaluable discussions and gratefully acknowledge funding from The Rockefeller Foundation. We thank members of the Network for Genetic Improvement of Cowpea for Africa (NGICA) for their support and counsel.

References

  1. Amitha K, Reddy TP (1996a) Induction of somatic embryogenesis and regeneration in cowpea (Signa sinensis L.). Ad Plant Sci 9:23–28Google Scholar
  2. Amitha K, Reddy TP (1996b) Regeneration of plantlets from different explants and callus cultures of Cowpea (Vigna unguiculata L.). Phytomorphology 46:207–211Google Scholar
  3. Anand RP, Ganapathi A, Anbazhagan VR, Vengadesan G, Selvaraj N (2000) High frequency plant regeneration via somatic embryogenensis in cell suspension cultures of cowpea, Vigna unguiculata (L.) Walp. In Vitro Cell Dev Biol-Plant 36:475–480CrossRefGoogle Scholar
  4. Anand RP, Ganapathi A, Vengadesan G, Selvaraj N, Anbazhagan VR, Kulothungan S (2001) Plant regeneration from immature cotyledon derived callus of Vigna unguiculata (L.) Walp (cowpea). Current Sci 80:671–674Google Scholar
  5. Brar MS, Al-Khayri JM, Morelock TE, Anderson EJ (1999a) Genotypic response of cowpea Vigna unguiculata (L.) to in vitro regeneration from cotyledon explants. In Vitro Cell Dev Biol-Plant 35:8–12Google Scholar
  6. Brar MS, Moore MJ, Al-Khayri JM, Morelock TE, Anderson EJ (1999b) Ethylene inhibitors promote in vitro regeneration of cowpea (Vigna unguiculata L.). In Vitro Cell Dev Biol-Plant 35:222–225CrossRefGoogle Scholar
  7. Cheema HK, Bawa J (1991) Clonal multiplication via multiple shoots in some legumes (Vigna unguiculata and Cajanus cajan). Acta Horticulturae 289:93–96Google Scholar
  8. Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol-Plant 40:31–45CrossRefGoogle Scholar
  9. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19:11–15Google Scholar
  10. Ehlers JD, Hall AE (1997) Cowpea; (Vigna unguiculata L. Walp.). Field Crops Res 53:187–204CrossRefGoogle Scholar
  11. FAOSTAT (2004) http://faostat.fao.org/
  12. Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  13. Garcia JA, Hillie J, Goldbach R (1986) Transformation of cowpea Vigna unguiculata cells with an antibiotic resistance gene using a Ti-Plasmid-derived vector. Plant Sci 44:37–46CrossRefGoogle Scholar
  14. Garcia JA, Hillie J, Goldbach R (1987) Transformation of cowpea Vigna unguiculata cells with a full length DNA copy of cowpea mosaic virus m-RNA. Plant Sci 44:89–98CrossRefGoogle Scholar
  15. Ikea J, Ingelbrecht I, Uwaifo A, Thottappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. walp.) using particle gun method. Afr J Biotechnol 2:211–218Google Scholar
  16. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  17. Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Polyamines and plant morphogenesis. Biologia Plantarum 43:1–11CrossRefGoogle Scholar
  18. Kormawa PM, Chianu JN, Manyong VM (2000) Cowpea demand and supply patterns in West Africa: The case of Nigeria. in: Proceedings of World Cowpea Conference III, 4-7 September 2000. IITA, Ibadan, Nigeria, pp.376–386 (http://www.iita.org/info/cowpea2.htm)
  19. Kulothungan S, Ganapathi A, Shajahan A, Kathiravan K (1995) Somatic embryogenesis in cell suspension culture of cowpea (Vigna unguiculata (L.) Walp). Israel J Plant Sci 43:385–390Google Scholar
  20. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967PubMedCrossRefGoogle Scholar
  21. Le BV, Cruz de Carvalho MH, Zuily-Fodil Y, Thi ATP, Van KTT (2002) Direct whole plant regeneration of cowpea (Vigna unguiculata (L.) Walp) from cotyledonary node thin cell layer explants. J Plant Physiol 159:1255–1258CrossRefGoogle Scholar
  22. Machuka J (2000) Potential role of transgenic approaches in the control of cowpea insect pests. in: Proceedings of World Cowpea Conference III, 4–7 September 2000. IITA, Ibadan, Nigeria, pp 213–222 (http://www.iita.org/info/cowpea2.htm)
  23. Machuka J, Adesoye A, Obembe OO (2000) Regeneration and genetic transformation in cowpea. in: Proceedings of World Cowpea Conference III, 4–7 September 2000. IITA, Ibadan, Nigeria, pp. 185–196 (http://www.iita.org/info/cowpea2.htm)
  24. Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci (USA) 94:8393–8398CrossRefGoogle Scholar
  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioasay with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  26. Muthukumar B, Mariamma M, Gnanam A (1995) Regeneration of plants fom primary leaves of cowpea. Plant Cell, Tissue and Organ Culture 42:153–155CrossRefGoogle Scholar
  27. Muthukumar B, Mariamma M, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens. Plant Cell Rep 15:980–985CrossRefGoogle Scholar
  28. Obembe OO, Kadiri M, Machuka J (2000). Induction of multiple shoots and regeneration from cotyledonary nodes and epicotyls. In: Proceedings of World Cowpea Conference III, 4–7 September 2000. IITA, Ibadan, Nigeria. 32 pGoogle Scholar
  29. Olhoft PM, Somers DA (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711CrossRefGoogle Scholar
  30. Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735PubMedGoogle Scholar
  31. Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179CrossRefGoogle Scholar
  32. Pellegrineschi A (1997) In vitro regeneration via organogenesis of cowpea (Vigna unguiculata (L.) Walp.). Plant Cell Rep 17:89–95CrossRefGoogle Scholar
  33. Penza R, Lurquin PF, Filippone E (1991) Gene transfer by cocultivation of mature embryos with Agrobacterium tumefaciens: application to cowpea (Vigna unguiculata Walp). J Plant Physiol 138:39–43Google Scholar
  34. Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Lu C-Y, Atkins CA, Cornish E (1997) Transformation of grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens mediated gene transfer to shoot apices. Mol Breed 3:341–349CrossRefGoogle Scholar
  35. Popelka JC, Terryn N, Higgins THV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167:195–206CrossRefGoogle Scholar
  36. Saini R, Jaiwal S, Jaiwal PK (2003) Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep 21:851–859PubMedGoogle Scholar
  37. Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82CrossRefGoogle Scholar
  38. Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101:751–757PubMedCrossRefGoogle Scholar
  39. Singh BB, Ehlers JD, Sharma B, Freire Filho FR (2000). Recent progress in cowpea breeding. in: Proceedings of World Cowpea Conference III, 4–7 September 2000. IITA, Ibadan, Nigeria, pp. 22–40Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. Carlos Popelka
    • 1
  • Stephanie Gollasch
    • 1
  • Andy Moore
    • 1
  • Lisa Molvig
    • 1
  • Thomas J. V. Higgins
    • 1
  1. 1.CSIRO Plant IndustryCanberraAustralia

Personalised recommendations