Plant Cell Reports

, Volume 23, Issue 8, pp 513–521 | Cite as

From axenic spore germination to molecular farming

One century of bryophyte in vitro culture
  • Annette Hohe
  • Ralf Reski


The first bryophyte tissue culture techniques were established almost a century ago. All of the techniques that have been developed for tissue culture of seed plants have also been adapted for bryophytes, and these range from mere axenic culture to molecular farming. However, specific characteristics of bryophyte biology—for example, a unique regeneration capacity—have also resulted in the development of methodologies and techniques different than those used for seed plants. In this review we provide an overview of the application of in vitro techniques to bryophytes, emphasising the differences as well as the similarities between bryophytes and seed plants. These are discussed within the framework of physiological and developmental processes as well as with respect to potential applications in plant biotechnology.


Liverwort Moss Marchantia Regeneration Physcomitrella 



Figure 2d was kindly provided by Alexander Lucumi and Iris Perner (Karlsruhe University, Institute for Mechanical Engineering and Mechanics, Bioprocess Engineering)


  1. Allsopp A (1957) Controlled differentiation in cultures of two liverworts. Nature 179:681–682Google Scholar
  2. Asakawa Y (1995) Chemical constituents of the bryophytes. In : Herz W, Kirby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural products, vol. 65. Springer, Berlin Heidelberg New York, pp 1–618Google Scholar
  3. Asakawa Y (2004) Chemosystematics of the Hepaticae. Phytochemistry 65:623–669CrossRefPubMedGoogle Scholar
  4. Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154:87–95CrossRefGoogle Scholar
  5. Ashton NW, Champagne CEM, Weiler T, Verkoczy LK (2000) The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytol 146:391–402CrossRefGoogle Scholar
  6. Becker H (2001) Moose und ihre biologisch aktiven Stoffe. Z Phytother 22:152–158Google Scholar
  7. Becquerel P (1906) Germination des spores d’Atrichum undulatum et d’Hypnum velutinum. Nutrition et développement de leurs protonéma dans des milieux stérilisés. Rev gén bot 18:49–67Google Scholar
  8. Benson-Evans K (1961) Environmental factors and bryophytes. Nature 191:255–260Google Scholar
  9. Benson-Evans K (1964) Physiology of the reproduction of bryophytes. Bryologist 67:431–445Google Scholar
  10. Binding H (1966) Regeneration und Verschmelzung nackter Laubmoos Protoplasten. Z Pflanzenphysiol 55:305–321Google Scholar
  11. Bopp M, Bhatla SC (1990) Physiology of sexual reproduction in mosses. Crit Rev Plant Sci 9:317–327Google Scholar
  12. Boyd PJ, Hall J, Cove DJ (1988) An airlift fermenter for the culture of the moss Physcomitrella patens. In: Glime JM (ed) Methods in bryology. Proc Bryol Methods Workshop. The Hattori Bot Lab, Nichinan, pp 41–46Google Scholar
  13. Burch J (2003) Some mosses survive cryopreservation without prior pre-treatment. Bryologist 106:270–277Google Scholar
  14. Burch J, Wilkinson T (2002) Cryopreservation of protonemata of Ditrichum cornubicum (Paton) comparing the effectiveness of four cryoprotectant pretreatments. Cryoletters 23:197–208PubMedGoogle Scholar
  15. Carlson PS, Smith HH, Dearing RD (1972) Parasexual interspecific plant hybridization. Proc Natl Acad Sci USA 69:2292–2294Google Scholar
  16. Cho SH, Chung YS, Cho SK, Rim YW, Shin JS (1999) Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens. Mol Cells 9:14–19PubMedGoogle Scholar
  17. Christianson ML (1998) A simple protocol for cryopreservation of mosses. Bryologist 101:32–35Google Scholar
  18. Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170CrossRefPubMedGoogle Scholar
  19. Doran PM (1999) Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol Prog 15:319–335CrossRefPubMedGoogle Scholar
  20. Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11:199–204CrossRefPubMedGoogle Scholar
  21. Egener T, Granado J, Guitton MC, Hohe A, Holtorf H, Lucht JM, Rensing S, Schlink K, Schulte J, Schween G, Zimmermann S, Duwenig E, Rak B, Reski R (2002) High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol 2:6CrossRefPubMedGoogle Scholar
  22. Esch H, Hartmann E, Cove D, Wada M, Lamparter T (1999) Phytochrome-controlled phototropism of protonemata of the moss Ceratodon purpureus: physiology of the wild type and class 2 ptr-mutants. Planta 209:290–298CrossRefPubMedGoogle Scholar
  23. Förster K (1927) Die Wirkung äusserer Faktoren auf Entwicklung und Gestaltbildung bei Marchantia polymorpha. Planta 3:325–390Google Scholar
  24. Girke T, Schmidt H, Zähringer U, Reski R, Heinz E (1998) Identification of a novel Δ6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J 15:39–48CrossRefPubMedGoogle Scholar
  25. Goebel K (1908) Einleitung in die experimentelle Morphologie der Pflanzen. BG Teubner, LeipzigGoogle Scholar
  26. Grimsley NH, Withers LA (1983) Cryopreservation of cultures of the moss Physcomitrella patens. Cryoletters 4:251–258Google Scholar
  27. Grout BWW (1995) Introduction to the in vitro preservation of plant cells, tissues and organs. In: Grout B (ed) Genetic preservation of plant cells in vitro. Springer, Berlin Heidelberg New York, pp 1–20Google Scholar
  28. Haberlandt G (1902) Culturversuche mit isolierten Pflanzenzellen. Sitz-Ber Math-Nat Kl Kais Akad Wiss Wien 111:69–92Google Scholar
  29. Hadeler B, Scholz S, Reski R (1995) Gelrite and agar differently influence cytokinin-sensitivity of a moss. J Plant Physiol 146:369–371Google Scholar
  30. Handa AK, Johri MM (1976) Cell differentiation by 3′,5′-cyclic AMP in a lower plant. Nature 259:480–482Google Scholar
  31. Hata J, Taya M (2000) Evaluation of carbohydrate utilization and photosynthetic carbon dioxide fixation in photomixotrophic culture of Marchantia polymorpha. J Chem Eng Jpn 33:277–284CrossRefGoogle Scholar
  32. Hata JI, Toyo-Oka Y, Taya M, Tone S (1997) A strategy for control of light intensity in suspension culture of photoautotrophic liverwort cells, Marchantia paleacea var. diptera. J Chem Eng Jpn 30:315–320Google Scholar
  33. Hata J, Taya M, Tani K, Nasu M (1999) Photoautotrophic cultures of the host and transformed cells of Marchantia polymorpha under controlled incident light intensity. J Biosci Bioeng 88:582–585CrossRefGoogle Scholar
  34. Hata J, Hua Q, Yang C, Shimizu K, Taya M (2000a) Characterization of energy conversion based on metabolic flux analysis in mixotrophic liverwort cells, Marchantia polymorpha. Biochem Eng J 6:65–74CrossRefPubMedGoogle Scholar
  35. Hata J, Hirai H, Taya M (2000b) Reduction in carbon dioxide emission, and enhancement of cell yield by control of light intensity in photomixotrophic batch culture of Marchantia polymorpha. J Biosci Bioeng 89:288–291CrossRefGoogle Scholar
  36. Hohe A, Reski R (2002) Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass production of protoplasts. Plant Sci 163:69–74CrossRefGoogle Scholar
  37. Hohe A, Reski R (2003) A tool for understanding homologous recombination in plants. Plant Cell Rep 21:1135–1142CrossRefPubMedGoogle Scholar
  38. Hohe A, Decker EL, Gorr G, Schween G, Reski R (2002a) Tight control of growth and cell differentiation in photoautotrophically growing moss Physcomitrella patens bioreactor cultures. Plant Cell Rep 20:1135–1140CrossRefGoogle Scholar
  39. Hohe A, Rensing SA, Mildner M, Lang D, Reski R (2002b) Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol 4:595–602CrossRefGoogle Scholar
  40. Hohe A, Egener T, Lucht J, Holtorf H, Reinhard C, Schween G, Reski R (2004) An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene knockouts in a moss, Physcomitrella patens. Curr Genet 44:339–347CrossRefPubMedGoogle Scholar
  41. Hughes JG (1962) The effect of day-length on the development of the sporophyte of Polytrichum aloides Hedw. and P. piliferum Hedw. New Phytol 61:266–273Google Scholar
  42. Irifune K, Ono K, Takahashi M, Murakami H, Morikawa H (1996) Stable transformation of cultures cells of the liverwort Marchantia polymorpha by particle bombardment. Transgen Res 5:337–341Google Scholar
  43. Jenkins GI, Cove DJ (1983) Light requirements for regeneration of protoplasts of the moss Physcomitrella patens. Planta 157:39–45CrossRefGoogle Scholar
  44. Johri MM, Desai S (1973) Auxin regulation of caulonema formation in moss protonema. Nat New Biol 245:223–224PubMedGoogle Scholar
  45. Kammerer W, Cove DJ (1996) Genetic analysis of the effects of re-transformation of transgenic lines of the moss Physcomitrella patens. Mol Gen Genet 250:380–382CrossRefPubMedGoogle Scholar
  46. Katoh K (1983) Kinetics of photoautotrophic growth of Marchantia polymorpha cells in suspension culture. Physiol Plant 59:242–248Google Scholar
  47. Katoh K (1988) Isolation and Maintenance of callus and cell suspension cultures of bryophytes. In: Glime JM (ed) Methods in bryology. Proc Bryol Methods Workshop. The Hattori Bot Lab, Nichinan, pp 99–106Google Scholar
  48. Kern VD, Sack FD (1999) Irradiance-dependent regulation of gravitropism by red light in protonema of the moss Ceratodon purpureus. Planta 209:299–307CrossRefPubMedGoogle Scholar
  49. Knoop B (1984) Development in bryophytes. In: Dyer AF, Duckett JG (eds) The experimental biology of bryophytes. Academic, London, pp 143–176Google Scholar
  50. Knop W (1884) Bereitung einer concentrirten Nährstofflösung für Pflanzen. Landw Versuchsstat 30:292–294Google Scholar
  51. Knudson LC (1922) Non-symbiotic germination of orchid seeds. Bot Gaz 73:1–25CrossRefGoogle Scholar
  52. Koprivova A, Stemmer C, Altmann F, Hoffmann A, Kopriva S, Gorr G, Reski R, Decker EL (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2:517–523 CrossRefGoogle Scholar
  53. Kreh W (1909) Über die Regeneration der Lebermoose. Nova Acta Acad Caesar Leop Carol 90:213–301Google Scholar
  54. Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74Google Scholar
  55. Küster E (1909) Über die Verschmelzung nackter Protoplasten. Ber Dtsch Bot Gesell 27:589–598Google Scholar
  56. Laibach F (1925) Das Taubwerden von Bastardsamen und künstliche Aufzucht früh absterbender Bastardembryonen. Z Bot 17:417–459Google Scholar
  57. Laimer M, Rücker W (eds) (2003) Plant tissue culture, 100 years since Gottlieb Haberlandt. Springer, Vienna New YorkGoogle Scholar
  58. Lal M (1984) The culture of bryophytes including apogamy, apospory, parthenogenesis and protoplasts. In: Dyer AF, Duckett JG (eds) The experimental biology of bryophytes. Academic, London, pp 97–115Google Scholar
  59. Leverone L, Pence VC (1993) Desiccation Tolerance and cryopreservation of temperate mosses and liverworts. Plant Physiol 102[Suppl]:S154–S154Google Scholar
  60. Lilienstern M (1927) Physiologisch-morphologische Untersuchung über Marchantia polymorpha L. in Reinkultur. Ber Dtsch Bot Ges 45 H 7:447–453Google Scholar
  61. Lucumi A, Fleck P, Posten C (2003) Scale-down of photobioreactors from moss cell suspension cultures. In: Sorvari S (ed) Proc 1st Int Conf Bioreactor Technol Cell Tissue Cult Biomed Applic. Tampere, Finland, pp 175–187Google Scholar
  62. Mues R (2000) Chemical constituents and biochemistry. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 150–181Google Scholar
  63. Nasu M, Tani K, Hattori C, Honda M, Shimaoka T, Yamaguchi N, Katoh K (1997) Efficient transformation of Marchantia polymorpha that is haploid and has very small genome DNA. J Ferment Bioeng 84:519–523CrossRefGoogle Scholar
  64. Nishiyama T, Hiwatashi Y, Sakakibara K, Kato M, Hasebe M (2000) Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res 7:9–17PubMedGoogle Scholar
  65. Ohta Y, Katoh K, Miyake K (1977) Establishment and growth characteristics of a cell suspension culture of Marchantia polymorpha L. with high chlorophyll content. Planta 136:229–232Google Scholar
  66. Oliver MJ, Velten J, Wood AJ (2000) Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses. Plant Ecol 151:73–84CrossRefGoogle Scholar
  67. Ono K, Ohyama K, Gamborg OL (1979) Regeneration of the liverwort Marchantia polymorpha L. from protoplasts isolated from cell suspension culture. Plant Sci Lett 14:225–229Google Scholar
  68. Pence VC (1998) Cryopreservation of bryophytes: the effects of abscisic acid and encapsulation dehydration. Bryologist 101:278–281Google Scholar
  69. Potrykus I, Spangenberg G (1995) Gene transfer to plants. Springer, Berlin Heidelberg New YorkGoogle Scholar
  70. Proctor M (2001) Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regul 35:147–156CrossRefGoogle Scholar
  71. Reski R (1998) Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends Plant Sci 3:209–210CrossRefGoogle Scholar
  72. Reski R (1999) Molecular genetics of Physcomitrella. Planta 208:301–309CrossRefGoogle Scholar
  73. Reutter K, Reski R (1996) Production of a heterologous protein in bioreactor cultures of fully differentiated moss plants. Plant Tissue Cult Biotechnol 2:142–147Google Scholar
  74. Rudolph H, Kirchhoff M, Gliesmann S (1988) Sphagnum culture techniques. In: Glime JM (ed) Methods in bryology. The Hattori Bot Lab, Nichinan, pp 25–34Google Scholar
  75. Sajc L, Grbisic D, Vunjak-Novakovic G (2000) Bioreactors for plant engineering: an outlook for further research. Biochem Eng J 4:89–99CrossRefGoogle Scholar
  76. Sawahel W, Onde S, Knight CD, Cove DJ (1992) Transfer of foreign DNA into Physcomitrella patens protonemal tissue using a gene gun. Plant Mol Biol Rep 10:314–315Google Scholar
  77. Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:138–141CrossRefGoogle Scholar
  78. Schaefer DG (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53:477–501CrossRefPubMedGoogle Scholar
  79. Schaefer D, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206CrossRefPubMedGoogle Scholar
  80. Schaefer D, Zryd JP, Knight C, Cove DJ (1991) Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 226:418–424PubMedGoogle Scholar
  81. Schieder O (1974) Selektion einer somatischen Hybride nach Fusion von Protoplasten auxotropher Mutanten von Sphaerocarpos donnellii Aust. Z Pflanzenphysiol 74:357–365Google Scholar
  82. Schieder O, Wenzel G (1972) Enzymatic isolation of protoplasts from the liverwort Sphaerocarpos donnellii Aust. Z Naturforsch 27:479–480Google Scholar
  83. Schulte J, Reski R (2004) High-throughput cryopreservation of 140000 Physcomitrella patens mutants. Plant Biol 6:119–127CrossRefPubMedGoogle Scholar
  84. Schween G, Hohe A, Koprivova A, Reski R (2003) Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protonema development in a moss, Physcomitrella patens. J Plant Physiol 160:209–212PubMedGoogle Scholar
  85. Schwuchow JM, Kern VD, Sack FD (2002) Tip-growing cells of the moss Ceratodon purpureus are gravitropic in high-density media. Plant Physiol 130:2095–2100CrossRefPubMedGoogle Scholar
  86. Servettaz C (1913) Recherches expérimentales sur le développement et la nutrition des mousses en milieux stérilisés. Ann Sci Nat Bot Biol Veg 17:111–223Google Scholar
  87. Sharma S, Jayaswal RK, Johri MM (1979) Cell-density-dependent changes in the metabolism of chloronema cell cultures. Plant Physiol 64:154–158Google Scholar
  88. Spiess LD, Lippincott BB, Lippincott JA (1984) Role of the moss cell-wall in gametophore formation induced by Agrobacterium tumefaciens. Bot Gaz 145:302–307CrossRefGoogle Scholar
  89. Stephan J (1928) Der Einfluss von Lichtqualität und –quantität (einschliesslich ultrarot) auf das Wachstum der Brutkörper von Marchantia polymorpha. Planta 6:510–518Google Scholar
  90. Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95:4368–4373CrossRefPubMedGoogle Scholar
  91. Stumm I, Meyer Y, Abel WO (1975) Regeneration of the moss Physcomitrella patens (Hedw.) from isolated protoplasts. Plant Sci Lett 5:113–118Google Scholar
  92. Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320Google Scholar
  93. Takenaka M, Yamaoka S, Hanajiri T, Shimizu-Ueda Y, Yamato KT, Fukuzawa H, Ohyama K (2000) Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgen Res 9:179–185CrossRefGoogle Scholar
  94. Takeuchi M, Matsushima H, Sugawara Y (1980) Long-term freeze preservation of protoplasts from carrot and Marchantia. Cryoletters 1:519–524Google Scholar
  95. Thümmler F, Schuster H, Bonenberger J (1992) Expression of oat phyA cDNA in the moss Ceratodon purpureus. Photochem Potobiol 56:771–776Google Scholar
  96. Vöchting H (1885) Über die Regeneration der Marchantiaceen. Jb Wiss Bot 16:367–414Google Scholar
  97. Voth PD, Hamner KC (1940) Responses of Marchantia polymorpha to nutrient supply and photoperiod. Bot Gaz 102:169–205CrossRefGoogle Scholar
  98. Wang TL, Horgan R, Cove D (1981) Cytokinins from the moss Physcomitrella patens. Plant Physiol 68:735–738Google Scholar
  99. Wann FB (1925) Some of the factors involved in the sexual reproduction of Marchantia polymorpha. Am J Bot 12:307–318Google Scholar
  100. Wenzel G, Schieder O (1973) Regeneration of isoslated protoplasts from nicotinic-acid deficient mutants of the liverwort Sphaerocarpos donnellii Aust. Plant Sci Lett 1:421–423CrossRefGoogle Scholar
  101. Whatley MH, Spiess LD (1977) Role of bacterial lipopolysaccharide in attachment of Agrobacterium to moss. Plant Physiol 60:765–766Google Scholar
  102. Wilbert E (1991) Biotechnologische Studien zur Massenkultur von Moosen unter besonderer Berücksichtigung des Arachidonsäurestoffwechsels. Thesis, University of Mainz, GermanyGoogle Scholar
  103. Wood A, Oliver MJ, Cove DJ (2000) Bryophytes as model systems. Bryologist 103:128–133Google Scholar
  104. Yamaoka S, Takenaka M, Hnajiri T, Shimizu-Ueda Y, Nishida H, Yamato KT, Fukuzawa H, Ohyama K (2004) A mutant with constituent sexual organ development in Marchantia polymorpha L. Sex Plant Reprod 16:253–257CrossRefGoogle Scholar
  105. Zeidler M, Hartmann E, Hughes J (1999) Transgene expression in the moss Ceratodon purpureus. J Plant Physiol 154:641–650Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Plant PropagationInstitute of Vegetable and Ornamental Crops (IGZ)Erfurt-KühnhausenGermany
  2. 2.Plant BiotechnologyFreiburg UniversityFreiburgGermany

Personalised recommendations