Advertisement

Plant Cell Reports

, Volume 23, Issue 12, pp 834–841 | Cite as

Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant

  • Marta Libik
  • Robert Konieczny
  • Beata Pater
  • Ireneusz Ślesak
  • Zbigniew Miszalski
Physiology and Biochemistry

Abstract

Callus was obtained from hypocotyls of Mesembryanthemum crystallinum seedlings cultured on two types of medium—germination medium (GM) and callus induction medium (CIM). Following subculture on shoot induction medium SIM1, the callus formed on CIM medium regenerated roots or somatic embryos, while that obtained on GM medium was non-regenerative. The activities of CuZn-superoxidase dismutase (SOD) were comparable in all calli, but the activities of FeSOD and MnSOD varied according to the activity of photosystem II and the regenerative potential of the tissues. Catalase (CAT) activity was related to H2O2 concentration and affected by both the culture conditions and the morphogenic potential of the calli. The possible role of CAT, SODs and H2O2 in the regeneration of M. crystallinum from callus is discussed.

Keywords

Catalase Hydrogen peroxide Mesembryanthemum crystallinum Plant regeneration Superoxide dismutase 

Abbreviations

BAP

6-Benzylaminopurine

BSA

Bovine serum albumin

CAM

Crassulacean acid metabolism

CAT

Catalase [EC 1.11.1.6]

DTT

Dithiotreitol

2,4-D

2,4-Dichlorophenoxyacetic acid

EDTA

Ethylenediaminetetraacetic acid

Fm

Maximum chlorophyll a fluorescence

F0

Minimum chlorophyll a fluorescence

Fv/Fm

Maximum photochemical efficiency of photosystem II (Fv, the difference between Fm and F0)

NAA

α-Naphthaleneacetic acid

NBT

Nitro blue tetrazolium salt

PAGE

Polyacrylamide gel electrophoresis

PEG

Polyethylene glycol

RH

Relative humidity

ROS

Reactive oxygen species

SOD

Superoxide dismutase [EC 1.15.1.1]

TEMED

N,N,N′,N-tetramethylethylenediamine

Tricine

N-Tris[hydroxymethyl]methylglycine

Notes

Acknowledgements

This study was partly supported by Polish KBN grants 6P04C 00320, 6P04F 03420, 3P04C06423 and EU grant QoL-2001-Integr to the Institute of Plant Physiology Polish Academy of Science and Deutsche Forschungsanstalt für Luft-und Raumfahrt (DLR). The Deutsche Akademische Austauschdienst (DAAD) provided the growth chamber.

References

  1. Adams P, Nelson DE, Yamada S, Chmara, Jensen WG, Bohnert JH, Griffiths H (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytopathol 138:171–190CrossRefGoogle Scholar
  2. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  3. Alsher RG, Erturk N, Heath L (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341CrossRefPubMedGoogle Scholar
  4. Bagnoli F, Capuana M, Racchi ML (1998) Developmental changes of catalase and superoxide dismutase in zygotic and somatic embryos of horse chestnut. Aust J Plant Physiol 25:909–913Google Scholar
  5. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287PubMedGoogle Scholar
  6. Benson E, Lynch PT, Jones J (1992) Variation in free-radical damage in rice cell suspensions with different embryogenic potentials. Planta 188:296–305CrossRefGoogle Scholar
  7. Bohnert HJ, Cushman JC (2001) The ice plant cometh: lesson in abiotic stress tolerance. J Plant Growth Regul 19:334–346CrossRefGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  9. Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416Google Scholar
  10. Claire DA, Ngoc Duong M, Darr D, Archibald F, Fridovich I (1984) Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem 140:532–537PubMedGoogle Scholar
  11. Cui K, Xing G, Liu X, Xing G, Wang Y (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16CrossRefGoogle Scholar
  12. Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124CrossRefPubMedGoogle Scholar
  13. Cushman JC, Wulan T, Kuscuoglu N, Spatz MD (2000) Efficient plant regeneration of Mesembryanthemum crystallinum via somatic embryogenesis. Plant Cell Rep 19:459–463CrossRefGoogle Scholar
  14. Dat J, Vandenabeele S, Vranova E, van Montagu M, Inzè D, van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795CrossRefPubMedGoogle Scholar
  15. Desikan R, Mackerness RS-H, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172CrossRefPubMedGoogle Scholar
  16. Halliwell B (1997) Free radicals and human disease-trick or treat?. In: Thomas CE, Kalyanaraman B (eds) Oxygen radicals and the disease process. Harwood Academic, Switzerland, pp 1–15Google Scholar
  17. Inzè D, van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158CrossRefGoogle Scholar
  18. Konieczny R, Czaplicki A, Golczyk H, Przywara L (2003) Two pathways of plant regeneration in wheat anther culture. Plant Cell Tissue Org Cult 73:177–187CrossRefGoogle Scholar
  19. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685PubMedGoogle Scholar
  20. Libik M, Pater B, Elliot S, Ślesak I, Miszalski Z (2004) Malate accumulation in different organs of Mesembryanthemum crystallinum L. following age-dependent or salinity-triggered CAM metabolism. Z Naturforsch 59c:223–228Google Scholar
  21. Lüttge U (1993) The role of crassulacean acid metabolism (CAM) in adaptation of plants to salinity. New Phytopathol 125:59–71Google Scholar
  22. Marco A de, Roubelakis-Angelakis KA (1996a) The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplasts. Plant Physiol 110:137–145PubMedGoogle Scholar
  23. Marco A de, Roubelakis-Angelakis KA (1996b) Hydrogen peroxide plays a bivalent role in the regeneration of protoplasts. J Plant Physiol 149:109–114Google Scholar
  24. Meiners MS, Thomas JC, Bohnert HJ, Cushman JC (1991) Regeneration of multiple shoots and plants from Mesembryanthemum crystallinum. Plant Cell Rep 9:563–566CrossRefGoogle Scholar
  25. Miszalski Z, Ślesak I, Niewiadomska E, Bączek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179CrossRefGoogle Scholar
  26. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefPubMedGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  28. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247CrossRefPubMedGoogle Scholar
  29. Papadakis AI, Roubelakis-Angelakis KA (2002) Is oxidative stress responsible for plant protoplast recalcitrance? Plant Physiol Biochem 40:549–559CrossRefGoogle Scholar
  30. Papadakis AI, Siminis CI, Roubelakis-Angelakis KA (1999) Generation of active oxygen species in tobacco and grapevine protoplasts. Plant Physiol 121:197–205CrossRefPubMedGoogle Scholar
  31. Papadakis AI, Siminis CI, Roubelakis-Angelakis KA (2001) Reduced antioxidant machinery correlates with suppression of totipotency in plant protoplasts. Plant Physiol 126:434–444CrossRefPubMedGoogle Scholar
  32. Pinheiro da Costa S, Soares A, Arnholdt-Shmitt B (2001) Studies on induction embryogenic globular structures in Opuntia ficus-indica. J Prof Assoc Cactus Dev 4:66–74Google Scholar
  33. Racchi ML, Bagnoli F, Balla I, Danti S (2001) Differential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.). Plant Cell Rep 20:169–174CrossRefGoogle Scholar
  34. Rossum MWPC, Alberda M, van der Plas LHW (1997) Role of oxidative damage in tulip bulb scale micropropagation. Plant Sci 130:207–216CrossRefGoogle Scholar
  35. Scandalios JG, Guan L, Polidoros AN (1997) Catalase in plants: gene structure, properties, regulation and expression. In: Scandalios JG (ed) Oxidative stress and molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 343–406Google Scholar
  36. Siminis CI, Kanellis AK, Roubelakis-Angelakis KA (1994) Catalase is differentially expressed in dividing and nondividing protoplasts. Plant Physiol 105:1375–1383PubMedGoogle Scholar
  37. Ślesak I, Miszalski Z (2003) Superoxide dismutase-like protein from roots of the intermediate C3-CAM plant Mesembryanthemum crystallinum L. in in vitro culture. Plant Sci 164:497–505CrossRefGoogle Scholar
  38. Ślesak I, Karpinska B, Surówka E, Miszalski Z, Karpinski S (2003a) Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol 44:573–581CrossRefPubMedGoogle Scholar
  39. Ślesak I, Libik M, Miszalski Z (2003b) Superoxide dismutase activity in callus from the C3-CAM intermediate plant Mesembryanthemum crystallinum L. Plant Cell Tissue Org Cult 75:49–55CrossRefGoogle Scholar
  40. Thorpe TA (1980) Organogenesis in vitro: structural, physiological and biochemical aspects. Int Rev Cytol Suppl 112A:71–111Google Scholar
  41. Vranová E, Inzé D, van Bergusegem F (2002) Signal transduction during oxidative stress, J Exp Bot 53:1227–1236CrossRefGoogle Scholar
  42. Wang B, Lüttge U (1994) Induction and subculture of callus and regeneration of fertile plants of Mesembryanthemum crystallinum L. Pol J Environ Stud 3:55–57Google Scholar
  43. Woodbury W, Spencer AK, Stahman MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305PubMedGoogle Scholar
  44. Yen HE, Zhang D, Lin J-H, Edwards GE, Ku MSB (1997) Salt-induced changes in protein composition in light-grown callus of Mesembryanthemum crystallinum. Physiol Plant 101:526–532CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Marta Libik
    • 1
  • Robert Konieczny
    • 2
  • Beata Pater
    • 1
  • Ireneusz Ślesak
    • 1
  • Zbigniew Miszalski
    • 1
    • 3
  1. 1.Institute of Plant PhysiologyPolish Academy of SciencesCracowPoland
  2. 2.Department of Plant Cytology and EmbryologyJagiellonian UniversityCracowPoland
  3. 3.Institute of BiologyPedagogical AcademyCracowPoland

Personalised recommendations