Plant Cell Reports

, Volume 22, Issue 1, pp 46–51 | Cite as

Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1

  • M. ChabaudEmail author
  • F. de Carvalho-Niebel
  • D. G. Barker
Genetic Transformation and Hybridization


The efficiency of Agrobacterium tumefaciens transformation of the model legume Medicago truncatula cv. Jemalong (genotype 2HA) was evaluated for strains LBA 4404, C58pMP90, C58pGV2260 and AGL1. Binary vectors carrying promoter-gus/gfp reporter gene fusions and the nptII gene as selectable marker were used for plant in vitro transformation/regeneration. The highest transformation efficiency was obtained with the disarmed hypervirulent strain AGL1 (Ti plasmid TiBo542), for which the percentage of explants forming kanamycin (Km)-resistant calli was double that obtained with each of the other three strains. In addition, we were able to reduce the time necessary for plant regeneration using AGL1, with 24% of the explants generating Km-resistant transgenic plantlets within only 4–5 months of culture. Transgene expression in planta was analysed and found to be conserved in the T1 descendents.


Transformation Regeneration Jemalong AGL1 Agrobacterium 



We thank Dr. Ray Rose for kindly providing us with seeds of the highly regenerative genotype 2HA of M. truncatula cv. Jemalong, Dr. Lise Jouanin for the A. tumefaciens strains C58pGV2260, C58pMP90 and AGL1, Dr. Helena Carvalho for the plasmid pBin-prMtGSb-gus and Dr. Jim Haseloff for pBin-m-gfp5-ER. We also acknowledge Dr. Thierry Huguet, in whose group this work originally initiated. We are grateful to Beecham S.A. for providing free samples of the antibiotic Augmentin. Finally, we thank our colleagues for valuable discussions.


  1. Barker DG, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49Google Scholar
  2. Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218Google Scholar
  3. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721PubMedGoogle Scholar
  4. Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700PubMedGoogle Scholar
  5. Carvalho H, lescure N, de Billy F, Chabaud M, Lima L, Salema R, Cullimore J (2000) Cellular expression and regulation of the Medicago truncatula cytosolic glutamine synthetase genes in root nodules. Plant Mol Biol 42:741–756CrossRefPubMedGoogle Scholar
  6. Catoira R, Galera C, de Billy F, Penmetsa V, Journet E-P, Maillet F, Rosenberg C, Cook D, Gough C, Dénarié J (2000) Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12:1647–1665PubMedGoogle Scholar
  7. Chabaud M (1998) La transformation de Medicago truncatula par Agrobacterium tumefaciens et la régénération in vitro de plantes transgéniques par embryogénèse somatique: un outil pour l'étude de la symbiose Rhizobium-Medicago. PhD thesis, Paul Sabatier University, Toulouse, FranceGoogle Scholar
  8. Chabaud M, Passiatore JE, Cannon F, Buchanan-Wollaston V (1988) Parameters affecting the frequency of kanamycin-resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Rep 7:512–516Google Scholar
  9. Chabaud M, Larsonneau C, Marmouget C, Huguet T (1996) Transformation of barrel medic (Medicago truncatula Gaertn) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the MtENOD12 nodulin promoter fused to the gus reporter gene. Plant Cell Rep 15:305–310Google Scholar
  10. Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer. Nucleic Acids Res 13:4777–4788PubMedGoogle Scholar
  11. De Carvalho-Niebel F, Timmers ACJ, Chabaud M, Defaux-Petras A, Barker DG (2002) The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula. Plant J 32:343–352Google Scholar
  12. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA miniprepraration: version II. Plant Mol Biol Rep 4:19–21Google Scholar
  13. Fagard M, Vaucheret H (2000) (Trans)gene silencing in plants: how many mechanisms? Annu Rev Plant Physiol Plant Mol Biol 51:167–194Google Scholar
  14. Federova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130:519–537CrossRefPubMedGoogle Scholar
  15. Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256Google Scholar
  16. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127PubMedGoogle Scholar
  17. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180Google Scholar
  18. Hoffmann B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol Plant-Microbe Interact 10:3–315Google Scholar
  19. Jefferson RA, Kanavagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  20. Jin S, Komari T, Gordon MP, Nester EW (1987) Genes responsible for supervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol 169:4417–4425PubMedGoogle Scholar
  21. Journet E-P, Pichon M, Dedieu A, de Billy F, Truchet G, Barker DG (1994) Rhizobium meliloti Nod factors elicit cell-specific transcription of the ENOD12 gene in transgenic alfalfa. Plant J 6:241–249CrossRefPubMedGoogle Scholar
  22. Journet E-P, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer M-J, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P (2003) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res (in press)Google Scholar
  23. Kamaté K, Rodriguez-Llorente ID, Scholte M, Durand P, Ratet P, Kondorosi E, Kondorosi A, Trinh TH (2000) Transformation of floral organs with GFP in Medicago truncatula. Plant Cell Rep 19:647–653Google Scholar
  24. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396Google Scholar
  25. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967PubMedGoogle Scholar
  26. Montoro P, Teinseree N, Rattana W, Kongsawadworakul P, Michaux-Ferriere N (2000) Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep 19:851–855CrossRefGoogle Scholar
  27. Oldroyd GED, Geurts R (2001) Medicago truncatula, going where no plant has gone before. Trends Plant Sci 6:552–554PubMedGoogle Scholar
  28. Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530CrossRefPubMedGoogle Scholar
  29. Rose RJ, Nolan KE, Bicego L (1999) The development of the highly regenerative seed line Jemalong 2 HA for transformation of Medicago truncatula: implications for regenerability via somatic embryogenesis. J Plant Physiol 155:788–791Google Scholar
  30. Sagan M, Morandi D, Tarenghi E, Duc G (1995) Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn.) after gamma-ray mutagenesis. Plant Sci 111:63–71Google Scholar
  31. Scholte M, d'Erfurth I, Rippa S, Mondy S, Cosson V, Durand P, Breda C, Trinh H, Rodriguez-Llorente I, Kondorosi E, Schultze M, Kondorosi A, Ratet P (2002) T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery. Mol Breed 10:203–215CrossRefGoogle Scholar
  32. Szabados L, Ratet P, Grunenberg B, de Bruijn FJ (1995) Functional analysis of the Sesbania rostrata leghemoglobin glb3 gene 5′-upstream region in transgenic Lotus corniculatus and Nicotiana tabacum plants. Plant Cell 2:973–986CrossRefGoogle Scholar
  33. Thomas MR, Rose RJ, Nolan KE (1992) Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Rep 11:113–117Google Scholar
  34. Thoquet P, Ghérardi M, Journet E-P, Kereszt A, Ané J-M, Prospéri J-M, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1 ( Google Scholar
  35. Trieu AT, Harrison MJ (1996) Rapid transformation of Medicago truncatula: regeneration via shoot organogenesis. Plant Cell Rep 16:6–11Google Scholar
  36. Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou T-J, Katagi H, Dewbre GR, Weigel D, Harrison M (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541PubMedGoogle Scholar
  37. Trinh TH, Ratet P, Kondorosi E, Durand P, Kamate K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355CrossRefGoogle Scholar
  38. Turk SCHJ, Melchers LS, den Dulk-Ras H, Regensburg-Tuïnk AJG, Hooykaas PJJ (1991) Environmental conditions differentially affect vir gene induction in different Agrobacterium strains: role of VirA sensor protein. Plant Mol Biol 16:1051–1059PubMedGoogle Scholar
  39. Wang JH, Rose RJ, Donaldson BI (1996) Agrobacterium-mediated transformation and expression of foreign genes in Medicago truncatula. Aust J Plant Physiol 23:265–270Google Scholar
  40. Wang K, Herrera-Estrella L, Van Montagu M, Zambryski P (1984) Right 25-bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38:455–462PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Chabaud
    • 1
    Email author
  • F. de Carvalho-Niebel
    • 1
  • D. G. Barker
    • 1
  1. 1.Laboratoire des Interactions Plantes-MicroorganismesINRA-CNRSCastanet Tolosan CedexFrance

Personalised recommendations