Secretory factors produced by adipose mesenchymal stem cells downregulate Th17 and increase Treg cells in peripheral blood mononuclear cells from rheumatoid arthritis patients

  • Georgi VasilevEmail author
  • Mariana Ivanova
  • Ekaterina Ivanova-Todorova
  • Kalina Tumangelova-Yuzeir
  • Ekaterina Krasimirova
  • Rumen Stoilov
  • Dobroslav Kyurkchiev
Observational Research


We aimed to assess the immunoregulatory effects of secretory factors produced by adipose tissue-derived MSC (AT-MSC) on Th17 and Treg subsets from patients with rheumatoid arthritis (RA). 17 patients with active disease matching the ACR/EULAR 2010 criteria for RA were included. Patients’ peripheral blood mononuclear cells (PBMC) were cultured in AT-MSC-conditioned medium (AT-MSCcm) and in control medium. The cytokine production of AT-MSC and PBMC was quantified by ELISA. Th17 and Treg were determined by flow cytometry. AT-MSCcm contained: IL-6, IL-17, IL-21, CCL2, CCL5, IL-8, sVEGF-A and PGE2. Cultivation of patients’ PBMC with AT-MSCcm increased TGF-β1 (8318 pg/ml; IQR 6327–11,686) vs control medium [6227 pg/ml (IQR 1681–10,148, p = 0.013)]. PBMC cultivated with AT-MSCcm downregulated TNF-α, IL-17A, and IL-21 compared to control PBMC: 5 pg/ml IQR (1.75–11.65) vs 1 pg/ml (IQR 0.7–1.9), p = 0.001; 4.2 pg/ml (IQR 3.1–6.1) vs 2.3 pg/ml (IQR.75–5.42), p = 0.017; 66.9 pg/ml (IQR 40.6–107.2) vs 53 pg/ml (IQR 22–73), p = 0.022. Th17 decreased under the influence of AT-MSCcm: 10.13 ± 3.88% vs 8.98 ± 3.58%, p = 0.02. CD4+FoxP3+, CD4+CD25FoxP3+, and CD4+CD25+FoxP3+ was 11.35 ± 4.1%; 7.13 ± 3.12% and 4.22 ± 2% in control PBMC. Accordingly, CD4+FoxP3+, CD4+CD25FoxP3+, and CD4+CD25+FoxP3+ significantly increased in PBMC cultured with AT-MSCcm: 15.6 ± 6.1%, p = 0.001; 9.56 ± 5.4%, p = 0.004 and 6.04 ± 3.6%, p = 0.001. All these effects could define MSC-based approaches as adequate avenues for further treatment development in RA.


Mesenchymal stem cells Immunosuppression Rheumatoid arthritis Th17 Treg Cytokines 


Author contributions

Research concept and design: DK. Methodology: EI-T, MI. Data curation: GV. Investigation: GV, EK, KY, MI, RS. Data analysis and interpretation: DK, GV. Project administration: GV. Validation: DK. Writing the article: GV. Critical revision and editing of the article: DK, MI, EI-T, EK.


This work is a part of the doctoral thesis of Georgi Vasilev MD and was supported by Medical University of Sofia under the project ‘Young Investigator’ No: 7679/21.11.19, contract No: 128/2018.

Compliance with ethical standards

Conflict of interest

Authors report no conflict of interest concerning this article.

Ethical approval

All experiments performed in this study involving human participants were approved by the institutional and national research committee and complied with the Helsinki Declaration of 1964 and its later amendments (2008).

Informed consent

Voluntarily signed informed consent was obtained from all participants in accordance with the ethical recommendations of the Helsinki Declaration before entering the study.


  1. 1.
    Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20:14–20. CrossRefGoogle Scholar
  2. 2.
    Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12:126–131. CrossRefGoogle Scholar
  3. 3.
    Pittenger MF, Mosca JD, McIntosh KR (2000) Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. In: Melcher F (ed) Lymphoid organogenesis. Current topics in microbiology and immunology, vol 251. Springer, Berlin. Google Scholar
  4. 4.
    Pittengerl MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147. CrossRefGoogle Scholar
  5. 5.
    Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506. CrossRefGoogle Scholar
  6. 6.
    Yagi H, Soto-Gutierrez Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, Yarmush ML (2010) Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant 19:667–679. CrossRefGoogle Scholar
  7. 7.
    Álvaro-Gracia JM, Jover JA, García-Vicuña R et al (2017) Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial. Ann Rheum Dis 76:196–202. CrossRefGoogle Scholar
  8. 8.
    Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, Xu T, Le A, Shi S (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27:1421–1432. CrossRefGoogle Scholar
  9. 9.
    Karussis D, Kassis I, Kurkalli BG, Slavin S (2008) Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J Neurol Sci 265:131–135. CrossRefGoogle Scholar
  10. 10.
    Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586. CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Niu Q, Cai B, Huang ZC, Shi YY, Wang LI (2012) Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol Int 32:2731–2736. CrossRefGoogle Scholar
  13. 13.
    Ivanova-Todorova E, Bochev I, Dimitrov R, Belemezova K, Mourdjeva M, Kyurkchiev S, Kinov P, Altankova I, Kyurkchiev D (2012) Conditioned medium from adipose tissue-derived mesenchymal stem cells induces CD4+FOXP3+ cells and increases IL-10 secretion. J Biomed Biotechnol 2012:295167. CrossRefGoogle Scholar
  14. 14.
    McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442. CrossRefGoogle Scholar
  15. 15.
    Park CW, Kim KS, Bae S, Son HK, Myung PK, Hong HJ, Kim H (2009) Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int J Stem Cells 2:59–68CrossRefGoogle Scholar
  16. 16.
    NajarM Rouas R, Raicevic G, Boufker HI, Lewalle P, Meuleman N et al (2009) Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy 11:570–583. CrossRefGoogle Scholar
  17. 17.
    Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117:1162–1172. CrossRefGoogle Scholar
  18. 18.
    Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, Achong MK (1998) IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Investig 101:311–320. CrossRefGoogle Scholar
  19. 19.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822. CrossRefGoogle Scholar
  20. 20.
    Kim HS, Shin TH, Lee BC, Yu KR, Seo Y, Lee S, Seo MS, Hong IS, Choi SW, Seo KW, Nunez G, Park JH, Kang KS (2013) Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology 145(1392–1403):e1–e8. Google Scholar
  21. 21.
    Tanaka H, Arimura Y, Yabana T, Goto A, Hosokawa M, Nagaishi K, Yamashita K, Yamamoto H, Sasaki Y, Fujimiya M, Imai K, Shinomura Y (2011) Myogenic lineage differentiated mesenchymal stem cells enhance recovery from dextran sulfate sodium-induced colitis in the rat. J Gastroenterol 46:143–152. CrossRefGoogle Scholar
  22. 22.
    Maggini J, Mirkin G, Bognanni I et al (2010) Mouse bone marrow–derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5:e9252. CrossRefGoogle Scholar
  23. 23.
    Maseda D, Banerjee A, Johnson EM, Washington MK, Kim H, Lau KS, Crofford LJ (2018) mPGES-1-mediated production of PGE2 and EP4 receptor sensing regulate T cell colonic inflammation. Front Immunol 9:2954. CrossRefGoogle Scholar
  24. 24.
    Voron T, Collussi O, Marcheteau E et al (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212:139–144. CrossRefGoogle Scholar
  25. 25.
    Suzuki H, Onishi H, Wada J, Yamasaki A, Tanaka H, Nakano K, Morisaki T, Katano M (2010) VEGFR2 is selectively expressed by FOXP3high CD4+ Treg. Eur J Immunol 40:197–203. CrossRefGoogle Scholar
  26. 26.
    Oestreich KJ, Yoon H, Ahmed R, Boss JM (2008) NFATc1 regulates PD-1 expression upon T cell activation. J Immunol 181:4832–4839. CrossRefGoogle Scholar
  27. 27.
    Rafei M, Hsieh J, Fortier S, Li M, Yuan S, Birman E, Forner K, Boivin MN, Doody K, Tremblay M, Annabi B, Galipeau J (2008) Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112:4991–4998. CrossRefGoogle Scholar
  28. 28.
    Malemud CJ (2018) Defective T-cell apoptosis and T-regulatory cell dysfunction in rheumatoid arthritis. Cells 7:223. CrossRefGoogle Scholar
  29. 29.
    Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341. CrossRefGoogle Scholar
  30. 30.
    Komatsu N, Okamoto K, Sawa S et al (2014) Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20:62–68. CrossRefGoogle Scholar
  31. 31.
    Duffy MM, Ritter T, Ceredig R, Griffin MD (2011) Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther 2:34. CrossRefGoogle Scholar
  32. 32.
    Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β. J Immunol 184:5885–5894. CrossRefGoogle Scholar
  33. 33.
    Bianchini R, Bistoni O, Alunno A, Petrillo MG, Ronchetti S, Sportoletti P, Bocci EB, Nocentini G, Gerli R, Riccardi C (2011) CD4+CD25lowGITR+ cells: a novel human CD4+ T-cell population with regulatory activity. Eur J Immunol 41:2269–2278. CrossRefGoogle Scholar
  34. 34.
    Procaccini C, Matarese G (2012) Regulatory T cells, mTOR kinase, and metabolic activity. Cell Mol Life Sci 69:3975–3987. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Clinical Immunology, Department of Clinical ImmunologyUniversity Hospital “St. Ivan Rilski”-Sofia, Medical University of SofiaSofiaBulgaria
  2. 2.Clinic of Rheumatology, University Hospital “St. Ivan Rilski”-Sofia, Department of Internal MedicineMedical University of SofiaSofiaBulgaria

Personalised recommendations