Rheumatology International

, Volume 39, Issue 3, pp 551–559 | Cite as

The association of CAT-262C/T polymorphism with catalase activity and treatment response in juvenile idiopathic arthritis

  • Jelena BašićEmail author
  • Jelena Vojinović
  • Tatjana Jevtović-Stoimenov
  • Milena Despotović
  • Tatjana Cvetković
  • Dragana Lazarević
  • Gordana Sušić
  • Vuk Milošević
  • Mina Cvetković
  • Dušica Pavlović
Genes and Disease


Oxidative stress is believed to be of great importance for both the etiology and the persistence of juvenile idiopathic arthritis (JIA). The aim of this study was to investigate the association of -262C/T polymorphism of the catalase (CAT) gene with JIA, as well as to evaluate whether this polymorphism can influence plasma CAT activity and outcome in JIA patients treated with etanercept. A total of 154 subjects (60 JIA patients and 94 healthy volunteers) were screened for CAT-262C/T gene polymorphism using the polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) method. Plasma CAT activity was determined using the spectrophotometric method according to Goth, prior to and 12 months after anti-TNF (etanercept) therapy. Clinical outcome was assessed using the JIA ACR (American College of Rheumatology) response criteria. The genotype and allele frequency distributions of CAT-262C/T polymorphism in the patients were significantly different from those of the controls (p = 0.014, p = 0.006). The TT genotype (polymorphic homozygous) was associated with a 4.36-fold higher likelihood of having JIA (95% CI 1.545–12.323, p = 0.005) as compared to the CC genotype (wild-type). At month 12 of treatment, JIA patients, carriers of the CC genotype, showed significantly higher plasma CAT activity (p = 0.004) and achieved the JIA ACR 70 response more often (p = 0.003) than the patients, carriers of the CT/TT genotype. This is the first study implying the possible association of CAT-262C/T polymorphism with JIA. The results suggest the potential protective effect of the CC genotype, with regard to CAT activity and treatment outcome.


Catalase CAT-262C/T polymorphism Etanercept Juvenile idiopathic arthritis 


Author contributions

JB, JV, TJS and DP designed the study. JB and JV collected and interpreted data and wrote the initial draft of the manuscript. TJS, MD, TC, DL, GS, VM, MC and DP contributed to the data collection and interpretation and revised the manuscript critically. All authors approved the final version to be submitted for publication and agree to be accountable for all aspects of the work.


This work was financially supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (Grant Number III41018).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study. All procedures performed in this study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

296_2019_4246_MOESM1_ESM.xlsx (10 kb)
Supplementary material 1 (XLSX 9 KB)


  1. 1.
    Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J et al (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31(2):390–392Google Scholar
  2. 2.
    Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344(12):907–916. CrossRefGoogle Scholar
  3. 3.
    Pavlović D, Đorđević V, Kocić G (2002) Signal transduction—free radical modulation. Jugoslov Med Biohem 21(2):69–84. CrossRefGoogle Scholar
  4. 4.
    Umar S, Kumar A, Sajad M, Zargan J, Ansari M, Ahmad S et al (2013) Hesperidin inhibits collagen-induced arthritis possibly through suppression of free radical load and reduction in neutrophil activation and infiltration. Rheumatol Int 33(3):657–663. CrossRefGoogle Scholar
  5. 5.
    Kageyama Y, Takahashi M, Nagafusa T, Torikai E, Nagano A (2008) Etanercept reduces the oxidative stress marker levels in patients with rheumatoid arthritis. Rheumatol Int 28(3):245–251. CrossRefGoogle Scholar
  6. 6.
    Kodydková J, Vávrová L, Kocík M, Žák A (2014) Human catalase, its polymorphisms, regulation and changes of its activity in different diseases. Folia Biol (Praha) 60(4):153–167Google Scholar
  7. 7.
    Ramos VA, Ramos PA, Dominguez MC (2000) Role of oxidative stress in the maintenance of inflammation in patients with juvenile rheumatoid arthritis. J Pediatr 76(2):125–132CrossRefGoogle Scholar
  8. 8.
    Ashour M, Salem S, Hassaneen H, El-Gadban H, Elwan N, Awad A, Basu TK (2000) Antioxidant status in children with juvenile rheumatoid arthritis (JRA) living in Cairo, Egypt. Int J Food Sci Nutr 51(2):85–90CrossRefGoogle Scholar
  9. 9.
    Sklodowska M, Gromadzinska J, Biernacka M, Wasowicz W, Wolkanin P, Marszalek A et al (1996) Vitamin E, thiobarbituric acid reactive substance concentrations and superoxide dismutase activity in the blood of children with juvenile rheumatoid arthritis. Clin Exp Rheumatol 14(4):433–439Google Scholar
  10. 10.
  11. 11.
    Chistiakov A, Zotova EV, Savosťanov KV, Bursa TR, Galeev IV, Strokov IA, Nosikov VV (2006) The 262T> C promoter polymorphism of the catalase gene is associated with diabetic neuropathy in type 1 diabetic Russian patients. Diabetes Metab 32(1):63–68CrossRefGoogle Scholar
  12. 12.
    Shen Y, Li D, Tian P, Shen K, Zhu J, Feng M et al (2015) The catalase C-262T gene polymorphism and cancer risk: a systematic review and meta-analysis. Medicine (Baltimore) 94(13):e679–e686. CrossRefGoogle Scholar
  13. 13.
    Quick SK, Shields PG, Nie J, Platek ME, McCann SE, Hutson AD et al (2008) Effect modification by catalase genotype suggests a role for oxidative stress in the association of hormone replacement therapy with postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 17(5):1082–1087. CrossRefGoogle Scholar
  14. 14.
    Ezzikouri S, El Feydi AE, Afifi R, Benazzouz M, Hassar M, Pineau P, Benjelloun S (2010) Polymorphisms in antioxidant defence genes and susceptibility to hepatocellular carcinoma in a Moroccan population. Free Radic Res 44(2):208–216. CrossRefGoogle Scholar
  15. 15.
    Khodayari S, Salehi Z, Fakhrieh Asl S, Aminian K, Mirzaei Gisomi N, Torabi Dalivandan S (2013) Catalase gene C-262T polymorphism: importance in ulcerative colitis. J Gastroenterol Hepatol 28(5):819–822. CrossRefGoogle Scholar
  16. 16.
    Hebert-Schuster M, Fabre EE, Nivet-Antoine V (2012) Catalase polymorphisms and metabolic diseases. Curr Opin Clin Nutr Metab Care 15(4):397–402. CrossRefGoogle Scholar
  17. 17.
    Horneff G, Schulz AC, Klotsche J, Hospach A, Minden K, Foeldvari I et al (2017) Experience with etanercept, tocilizumab and interleukin-1 inhibitors in systemic onset juvenile idiopathic arthritis patients from the BIKER registry. Arthritis Res Ther 19(1):256. CrossRefGoogle Scholar
  18. 18.
    Giannini EH, Ruperto N, Ravelli A, Lovell DJ, Felson DT, Martini A (1997) Preliminary definition of improvement in juvenile arthritis. Arthritis Rheum 40(7):1202–1209CrossRefGoogle Scholar
  19. 19.
    Forsberg L, Lyrenas L, de Faire U, Morgenstern R (2001) A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med 30(5):500–505CrossRefGoogle Scholar
  20. 20.
    Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196(2–3):143–152CrossRefGoogle Scholar
  21. 21.
    Goţia S, Popovici I, Hermeziu B (2001) Antioxidant enzymes levels in children with juvenile rheumatoid arthritis. Rev Med Chir Soc Med Nat Iasi 105(3):499–503Google Scholar
  22. 22.
    Winsz-Szczotka K, Kuźnik-Trocha K, Komosińska-Vassev K, Jura-PóBtorak A, Olczyk K (2016) Laboratory indicators of aggrecan turnover in juvenile idiopathic arthritis. Dis Markers 2016:7157169. CrossRefGoogle Scholar
  23. 23.
    Araujo V, Arnal C, Boronat M, Ruiz E, Dominguez C (1998) Oxidant–antioxidant imbalance in blood of children with juvenile rheumatoid arthritis. Biofactors 8(1–2):155–159CrossRefGoogle Scholar
  24. 24.
    Winsz-Szczotka K, Komosińska-Vassev K, Kuźnik-Trocha K, Gruenpeter A, Lachór-Motyka I, Olczyk K (2014) Influence of proteolytic–antiproteolytic enzymes and prooxidative–antioxidative factors on proteoglycan alterations in children with juvenile idiopathic arthritis. Clin Biochem 47(9):829–834. CrossRefGoogle Scholar
  25. 25.
    Quartier P, Taupin P, Bourdeaut F, Lemelle I, Pillet P, Bost M et al (2003) Efficacy of etanercept for the treatment of juvenile idiopathic arthritis according to the onset type. Arthritis Rheum 48(4):1093–1101. CrossRefGoogle Scholar
  26. 26.
    Halbig M, Horneff G (2009) Improvement of functional ability in children with juvenile idiopathic arthritis by treatment with etanercept. Rheumatol Int 30(2):229–238. CrossRefGoogle Scholar
  27. 27.
    Min JY, Lim SO, Jung G (2010)) Downregulation of catalase by reactive oxygen species via hypermethylation of CpG island II on the catalase promoter. FEBS Lett 584(11):2427–2432. CrossRefGoogle Scholar
  28. 28.
    Alexeeva EI, Namazova-Baranova LS, Bzarova TM, Valieva SI, Denisova RV, Sleptsova TV et al (2017) Predictors of the response to etanercept in patients with juvenile idiopathic arthritis without systemic manifestations within 12 months: results of an open-label, prospective study conducted at the National Scientific and Practical Center of Children’s Health, Russia. Pediatr Rheumatol Online J 15(1):51. CrossRefGoogle Scholar
  29. 29.
    Murdaca G, Negrini S, Magnani O, Penza E, Pellecchio M, Gulli R et al (2018) Update upon efficacy and safety of etanercept for the treatment of spondyloarthritis and juvenile idiopathic arthritis. Mod Rheumatol 28(3):417–431. CrossRefGoogle Scholar
  30. 30.
    De Sanctis S, Marcovecchio ML, Gaspari S, Del Torto M, Mohn A, Chiarelli F et al (2013) Etanercept improves lipid profile and oxidative stress measures in patients with juvenile idiopathic arthritis. J Rheumatol 40(6):943–948. CrossRefGoogle Scholar
  31. 31.
    Hunter H (2018) Question 2: Etanercept or adalimumab: which is a better biological therapy for juvenile idiopathic arthritis? Arch Dis Child 103(11):1087–1089. Google Scholar
  32. 32.
    Alexeeva E, Dvoryakovskaya T, Denisova R, Sleptsova T, Isaeva K, Chomahidze A, Fetisova A, Mamutova A, Alshevskaya A, Gladkikh V, Moskalev A (2018) Comparative analysis of the etanercept efficacy in children with juvenile idiopathic arthritis under the age of 4 years and children of older age groups using the propensity score matching method. Mod Rheumatol. Google Scholar
  33. 33.
    Basic J, Pavlovic D, Jevtovic-Stoimenov T, Vojinovic J, Susic G, Stojanovic I et al (2010) Etanercept reduces matrix metalloproteinase-9 level in children with polyarticular juvenile idiopathic arthritis and TNF-α-308GG genotype. J Physiol Biochem 66(2):173–180. CrossRefGoogle Scholar
  34. 34.
    Bašić J, Vojinović J, Jevtović-Stoimenov T, Despotović M, Sušić G, Lazarević D et al (2018) Vitamin D receptor gene polymorphism influences lipid profile in patients with juvenile idiopathic arthritis. Clin Rheumatol. Google Scholar
  35. 35.
    Constantin T, Foeldvari I, Vojinovic J, Horneff G, Burgos-Vargas R, Nikishina I et al (2016) Two-year efficacy and safety of etanercept in pediatric patients with extended oligoarthritis, enthesitis-related arthritis, or psoriatic arthritis. J Rheumatol 43(4):816–824. CrossRefGoogle Scholar
  36. 36.
    Saify K, Saadat I, Saadat M (2016) Influence of A-21T and C-262T genetic polymorphisms at the promoter region of the catalase (CAT) on gene expression. Environ Health Prev Med 21(5):382–386. CrossRefGoogle Scholar
  37. 37.
    Kalpakcioglu B, Enel K (2008) The interrelation of glutathione reductase, catalase, glutathione peroxidase, superoxide dismutase, and glucose-6-phosphate in the pathogenesis of rheumatoid arthritis. Clin Rheumatol 27(2):141–145. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of BiochemistryUniversity of NišNišSerbia
  2. 2.Clinic of PediatricsClinical Center NišNišSerbia
  3. 3.Faculty of MedicineUniversity of NišNišSerbia
  4. 4.Institute of RheumatologyBelgradeSerbia
  5. 5.Clinic of NeurologyClinical Center NišNišSerbia

Personalised recommendations