Advertisement

Rheumatology International

, Volume 39, Issue 3, pp 441–452 | Cite as

Progressive pseudorheumatoid dysplasia: a rare childhood disease

  • Sofia TorreggianiEmail author
  • Marta Torcoletti
  • Belinda Campos-Xavier
  • Francesco Baldo
  • Carlo Agostoni
  • Andrea Superti-Furga
  • Giovanni Filocamo
Review
  • 118 Downloads

Abstract

Progressive pseudorheumatoid dysplasia (PPRD) is a genetic bone disorder characterised by the progressive degeneration of articular cartilage that leads to pain, stiffness and joint enlargement. As PPRD is a rare disease, available literature is mainly represented by single case reports and only a few larger case series. Our aim is to review the literature concerning clinical, laboratory and radiological features of PPRD. PPRD is due to a mutation in Wnt1-inducible signalling protein 3 (WISP3) gene, which encodes a signalling factor involved in cartilage homeostasis. The disease onset in childhood and skeletal changes progresses over time leading to significant disability. PPRD is a rare condition that should be suspected if a child develops symmetrical polyarticular involvement without systemic inflammation, knobbly interphalangeal joints of the hands, and gait abnormalities. A full skeletal survey, or at least a lateral radiograph of the spine, can direct towards a correct diagnosis that can be confirmed molecularly. More than 70 WISP3 mutations have so far been reported. Genetic testing should start with the study of genomic DNA extracted from blood leucocytes, but intronic mutations in WISP3 causing splicing aberrations can only be detected by analysing WISP3 mRNA, which can be extracted from cultured skin fibroblasts. A skin biopsy is, therefore, indicated in patients with typical PPRD findings and negative mutation screening of genomic DNA.

Keywords

Progressive pseudorheumatoid dysplasia Progressive pseudorheumatoid arthropathy of childhood Spondyloepiphyseal dysplasia tarda with progressive arthropathy Juvenile idiopathic arthritis 

Notes

Author Contributions

ST and GF were involved in the conceptualization, planning and execution of this review. All authors contributed to data synthesis and interpretation, simultaneous draft review and the final version of the manuscript.

Funding

The authors received no specific funding for this work.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from the patient whose photograph and radiological image are displayed in the present article.

References

  1. 1.
    Wynne-Davies R, Hall C, Ansell BM (1982) Spondyloepiphyseal dysplasia tarda with progressive arthropathy. A new disorder of autosomal recessive inheritance. J Bone Jt Surg Br 64:442–445Google Scholar
  2. 2.
    Warman ML, Cormier-Daire V, Hall C et al (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet Part A 155:943–968.  https://doi.org/10.1002/ajmg.a.33909 Google Scholar
  3. 3.
    Teebi AS, Al Awadi SA (1986) Spondyloepiphyseal dysplasia tarda with progressive arthropathy: a rare disorder frequently diagnosed among Arabs. J Med Genet 23:189–191Google Scholar
  4. 4.
    Delague V, Chouery E, Corbani S et al (2005) Molecular study of WISP3 in nine families originating from the Middle-East and presenting with progressive pseudorheumatoid dysplasia: Identification of two novel mutations, and description of a founder effect. Am J Med Genet 138 A:118–126.  https://doi.org/10.1002/ajmg.a.30906 Google Scholar
  5. 5.
    Dalal A, Bhavani SL, Togarrati PP et al (2012) Analysis of the WISP3 gene in Indian families with progressive pseudorheumatoid dysplasia. Am J Med Genet Part A 158 A:2820–2828.  https://doi.org/10.1002/ajmg.a.35620 Google Scholar
  6. 6.
    Bhavani GS, Shah H, Dalal AB et al (2015) Novel and recurrent mutations in WISP3 and an atypical phenotype. Am J Med Genet Part A 167:2481–2484.  https://doi.org/10.1002/ajmg.a.37164 Google Scholar
  7. 7.
    Rai E, Mahajan A, Kumar P et al (2016) Whole Exome screening identifies novel and recurrent wisp3 mutations causing progressive pseudorheumatoid dysplasia in Jammu and Kashmir-India. Sci Rep 6:7–11.  https://doi.org/10.1038/srep27684 Google Scholar
  8. 8.
    Montané LS, Marín OR, Rivera-Pedroza CI et al (2016) Early severe scoliosis in a patient with atypical progressive pseudorheumatoid dysplasia (PPD): identification of two WISP3 mutations, one previously unreported. Am J Med Genet Part A 170:1595–1599.  https://doi.org/10.1002/ajmg.a.37619 Google Scholar
  9. 9.
    Duarte-Salazar C, Santillán-Chapa CG, Martínez-Coria E et al (2013) Displasia progresiva seudorreumatoide. Desorden genético raro que simula artritis idiopática juvenil. Reumatol Clin 9:316–318.  https://doi.org/10.1016/j.reuma.2012.08.001 Google Scholar
  10. 10.
    Hurvitz JR, Suwairi WM, Van Hul W et al (1999) Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nat Genet 23:94–98.  https://doi.org/10.1038/12699 Google Scholar
  11. 11.
    Garcia Segarra N, Mittaz L, Campos-Xavier AB et al (2012) The diagnostic challenge of progressive pseudorheumatoid dysplasia (PPRD): a review of clinical features, radiographic features, and WISP3 mutations in 63 affected individuals. Am J Med Genet Part C Semin Med Genet 160 C:217–229.  https://doi.org/10.1002/ajmg.c.31333 Google Scholar
  12. 12.
    Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417.  https://doi.org/10.1007/s00296-011-1999-3 Google Scholar
  13. 13.
    Yang GP, Lau LF (1991) Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth Diff 2:351–357Google Scholar
  14. 14.
    Kireeva ML, Latinkić BV, Kolesnikova TV et al (1997) Cyr61 and Fisp12 Are both ECM-associated signaling molecules: activities, metabolism, and localization during development. Exp Cell Res 233:63–77.  https://doi.org/10.1006/excr.1997.3548 Google Scholar
  15. 15.
    Lau LF, Lam SC-T (1999) The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 248:44–57.  https://doi.org/10.1006/excr.1999.4456 Google Scholar
  16. 16.
    Katsube K, Sakamoto K, Tamamura Y, Yamaguchi A (2010) Role of CCN, a vertebrate specific gene family, in development. Dev Growth Diff 51:55–67.  https://doi.org/10.1111/j.1440-169X.2009.01077.x Google Scholar
  17. 17.
    Zuo GW, Kohls CD, He BC et al (2010) The CCN proteins: important signaling mediators in stem cell differentiation and tumorigenesis. Histol Histopathol 25:795–806.  https://doi.org/10.1111/j.1365-2958.2010.07165.x.Characterization Google Scholar
  18. 18.
    Sen M, Cheng YH, Goldring MB et al (2004) WISP3-dependent regulation of type II collagen and aggrecan production in chondrocytes. Arthritis Rheum 50:488–497.  https://doi.org/10.1002/art.20005 Google Scholar
  19. 19.
    Nakamura Y, Weidinger G, Liang JO et al (2007) The CCN family member Wisp3, mutant in progressive pseudorheumatoid dysplasia, modulates BMP and Wnt signaling. J Clin Invest 117:3075–3086.  https://doi.org/10.1172/JCI32001 Google Scholar
  20. 20.
    Yang Y, Liao E (2007) Mutant WISP3 triggers the phenotype shift of articular chondrocytes by promoting sensitivity to IGF-1 hypothesis of spondyloepiphyseal dysplasia tarda with progressive arthropathy (SEDT-PA). Med Hypotheses 68:1406–1410.  https://doi.org/10.1016/j.mehy.2006.06.046 Google Scholar
  21. 21.
    Cui R-R, Huang J, Yi L et al (2007) WISP3 suppresses insulin-like growth factor signaling in human chondrocytes. Mol Cell Endocrinol 279:1–8.  https://doi.org/10.1016/J.MCE.2007.08.007 Google Scholar
  22. 22.
    Repudi SR, Patra M, Sen M (2013) WISP3-IGF1 interaction regulates chondrocyte hypertrophy. J Cell Sci 126:1650–1658.  https://doi.org/10.1242/jcs.119859 Google Scholar
  23. 23.
    Miller DS, Sen M (2007) Potential role of WISP3 (CCN6) in regulating the accumulation of reactive oxygen species. Biochem Biophys Res Commun 355:156–161.  https://doi.org/10.1016/j.bbrc.2007.01.114 Google Scholar
  24. 24.
    Davis L, Chen Y, Sen M (2006) WISP-3 functions as a ligand and promotes superoxide dismutase activity. Biochem Biophys Res Commun 342:259–265.  https://doi.org/10.1016/j.bbrc.2006.01.132 Google Scholar
  25. 25.
    Wang M, Man XF, Liu YQ et al (2013) Dysfunction of collagen synthesis and secretion in chondrocytes induced by Wisp3 mutation. Int J Endocrinol.  https://doi.org/10.1155/2013/679763 Google Scholar
  26. 26.
    Spranger J, Albert C, Schilling F et al (1983) Progressive pseudorheumatoid arthropathy of childhood (PPAC): a hereditary disorder simulating juvenile rheumatoid arthritis. Am J Med Genet 14:399–401.  https://doi.org/10.1002/ajmg.1320140224 Google Scholar
  27. 27.
    Gao YS, Ding H, Zhang CQ (2013) Total hip arthroplasty in a 17-year-old girl with progressive pseudorheumatoid dysplasia. J Clin Rheumatol 19:138–141.  https://doi.org/10.1097/RHU.0b013e318289bf35 Google Scholar
  28. 28.
    Zhou H, De Bu YH, Peng YQ et al (2007) Cellular and molecular responses in progressive pseudorheumatoid dysplasia articular cartilage associated with compound heterozygous WISP3 gene mutation. J Mol Med 85:985–996.  https://doi.org/10.1007/s00109-007-0193-2 Google Scholar
  29. 29.
    Bhavani GS, Shah H, Shukla A et al (1993) Progressive pseudorheumatoid dysplasia. University of Washington, SeattleGoogle Scholar
  30. 30.
    Neerinckx B, Thues C, Wouters C et al (2015) A homozygous deletion of exon 1 in WISP3 causes progressive pseudorheumatoid dysplasia in two siblings. Hum Genome Var 2:15049.  https://doi.org/10.1038/hgv.2015.49 Google Scholar
  31. 31.
    Temiz F, Ozbek MN, Kotan D et al (2011) A homozygous recurring mutation in WISP3 causing progressive pseudorheumatoid arthropathy. J Pediatr Endocrinol Metab 24:105–108.  https://doi.org/10.1515/JPEM.2011.117 Google Scholar
  32. 32.
    Madhuri V, Santhanam M, Rajagopal K et al (2016) WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198. Bone Jt Res 5:301–306.  https://doi.org/10.1302/2046-3758.57.2000520 Google Scholar
  33. 33.
    Rasore-Quartino A, Camera A, Camera G (1993) Spondylo-epiphyseal dysplasia tarda with progressive arthropathy: description of a patient whose mother showed minimal features of the disease. Pathologica 85:225–231Google Scholar
  34. 34.
    Ekbote AV, Danda D, Kumar S et al (2013) A descriptive analysis of 14 cases of progressive-psuedorheumatoid-arthropathy of childhood from south India: review of literature in comparison with Juvenile Idiopathic Arthritis. Semin Arthritis Rheum 42:582–589.  https://doi.org/10.1016/j.semarthrit.2012.09.001 Google Scholar
  35. 35.
    Sun J, Xia W, He S et al (2012) Novel and recurrent mutations of WISP3 in two Chinese families with progressive pseudorheumatoid dysplasia. PLoS One.  https://doi.org/10.1371/journal.pone.0038643 Google Scholar
  36. 36.
    Archik SG, Kamat RD (1990) Progressive pseudorheumatoid chondrodysplasia simulating juvenile rheumatoid arthritis. Indian J Pediatr 57:785–788Google Scholar
  37. 37.
    el-Shanti HE, Omari HZ, Qubain HI (1997) Progressive pseudorheumatoid dysplasia: report of a family and review. J Med Genet 34:559–563.  https://doi.org/10.1136/jmg.34.7.559 Google Scholar
  38. 38.
    Cogulu O, Ozkinay F, Ozkinay C et al (1999) Progressive pseudorheumatoid arthropathy of childhood. Indian J Pediatr 66(3):455–460Google Scholar
  39. 39.
    Mampaey S, Vanhoenacker F, Boven K et al (2000) Progressive pseudorheumatoid dysplasia. Eur Radiol 10:1832–1835.  https://doi.org/10.1007/s003300000518 Google Scholar
  40. 40.
    Balci S, Aypar E, Kasapçopur Ö et al (2001) An eleven-year-old female Turkish patient with progressive pseudorheumatoid dysplasia mimicking juvenile idiopathic arthritis [3]. Clin Exp Rheumatol 19:759Google Scholar
  41. 41.
    Kaya A, Ozgocmen S, Kiris A, Ciftci I (2005) Clinical and radiological diagnosis of progressive pseudorheumatoid dysplasia in two sisters with severe polyarthropathy. Clin Rheumatol 24:560–564.  https://doi.org/10.1007/s10067-005-1086-9 Google Scholar
  42. 42.
    Bennani L, Amine B, Ichchou L et al (2007) Progressive pseudorheumatoid dysplasia: three cases in one family. Jt Bone Spine 74:393–395.  https://doi.org/10.1016/j.jbspin.2006.11.014 Google Scholar
  43. 43.
    Shivanand G, Jain V, Lal H (2007) Progressive pseudorheumatoid chondrodysplasia of childhood. Singap Med J 48:151–153Google Scholar
  44. 44.
    Al Kaissi A, Chehida F, Ben, Ghachem M, Ben et al (2007) Ischiopubic and odontoid synchondrosis in a boy with progressive pseudorheumatoid chondrodysplasia. Pediatr Rheumatol 5:1–6.  https://doi.org/10.1186/1546-0096-5-19 Google Scholar
  45. 45.
    Al Kaissi A, Grill F, Jcpsp (2010) Clinicoradiographic presentation of a girl with progressive pseudorheumatoid arthropathy.[Erratum appears in J Coll Physicians Surg Pak. 2010 Apr;20(4):292]. J Coll Phys Surg Pak 20:140–141Google Scholar
  46. 46.
    Ye J, Zhang HW, Qiu WJ et al (2012) Patients with progressive pseudorheumatoid dysplasia: from clinical diagnosis to molecular studies. Mol Med Rep 5:190–195.  https://doi.org/10.3892/mmr.2011.619 Google Scholar
  47. 47.
    Yang X, Song Y, Kong Q (2013) Diagnosis and surgical treatment of progressive pseudorheumatoid dysplasia in an adult with severe spinal disorders and polyarthropathy. Jt Bone Spine 80:650–652.  https://doi.org/10.1016/j.jbspin.2013.03.006 Google Scholar
  48. 48.
    Mandal SK, Ghosh S, Mondal SS, Chatterjee S (2014) Spondyloepiphyseal dysplasia tarda with progressive arthropathy associated with subcapsular cataract. BMJ Case Rep 2013–2015.  https://doi.org/10.1136/bcr-2013-202938 Google Scholar
  49. 49.
    Cassa CA, Smith SE, Docken W et al (2016) An argument for early genomic sequencing in atypical cases: a WISP3 variant leads to diagnosis of progressive pseudorheumatoid arthropathy of childhood. Rheumatol (United Kingdom) 55:586–589.  https://doi.org/10.1093/rheumatology/kev367 Google Scholar
  50. 50.
    Luo H, Shi C, Mao C et al (2015) A novel compound WISP3 mutation in a Chinese family with progressive pseudorheumatoid dysplasia. Gene 564:35–38.  https://doi.org/10.1016/j.gene.2015.03.029 Google Scholar
  51. 51.
    Yu Y, Hu M, Xing X et al (2015) Identification of a mutation in the WISP3 gene in three unrelated families with progressive pseudorheumatoid dysplasia. Mol Med Rep 12:419–425.  https://doi.org/10.3892/mmr.2015.3430 Google Scholar
  52. 52.
    Al Kaissi A, Ryabykh S, Ochirova P et al (2017) Muscle Weakness. J Investig Med High Impact Case Rep 5:232470961668958.  https://doi.org/10.1177/2324709616689583 Google Scholar
  53. 53.
    Sailani MR, Chappell J, Jingga I et al (2018) WISP3 mutation associated with pseudorheumatoid dysplasia. Mol Case Stud 4:a001990.  https://doi.org/10.1101/mcs.a001990 Google Scholar
  54. 54.
    Kaibara N, Takagishi K, Katsuki I et al (1983) Spondyloepiphyseal dysplasia tarda with progressive arthropathy. Skelet Radiol 10:13–16.  https://doi.org/10.1007/BF00355384 Google Scholar
  55. 55.
    Kocyigit H, Arkun R, Ozkinay F et al (2000) Spondyloepiphyseal dysplasia tarda with progressive arthropathy. Clin Rheumatol 19:238–241Google Scholar
  56. 56.
    Arslanoğlu S, Murat H, Ferah G (2000) Spondyloepiphyseal dysplasia tarda with progressive arthropathy: An important form of osteodysplasia in the differential diagnosis of juvenile rheumatoid arthritis. BMC Med Genet 18:561–563Google Scholar
  57. 57.
    Bal S, Kocyigit H, Turan Y et al (2009) Spondyloepiphyseal dysplasia tarda: four cases from two families. Rheumtol Int 29:699–702.  https://doi.org/10.1007/s00296-008-0746-x Google Scholar
  58. 58.
    Cefle A, Cefle K, Tunaci M et al (2006) A case of progressive pseudorheumatoid arthropathy of ‘childhood’ with the diagnosis delayed to the fifth decade. Int J Clin Pract 60:1306–1309.  https://doi.org/10.1111/j.1742-1241.2005.00662.x Google Scholar
  59. 59.
    Tuǧ E, Şenocak E (2008) Spondyloepiphyseal dysplasia tarda with progressive arthropathy with delayed diagnosis. Turk J Med Sci 38:83–89Google Scholar
  60. 60.
    Hu Q, Liu J, Wang Y et al (2017) Delayed-onset of progressive pseudorheumatoid dysplasia in a Chinese adult with a novel compound WISP3 mutation: a case report. BMC Med Genet 18:1–5  https://doi.org/10.1186/s12881-017-0507-3 Google Scholar
  61. 61.
    Taşpinar Ö, Keleşoʇlu FM, Bakan S et al (2013) Progressive pseudorheumatoid dysplasia misdiagnosed as seronegative juvenile idiopathic arthritis. Turkiye Fiz Tip ve Rehabil Derg 59:458.  https://doi.org/10.4274/tftr.24.59.1 Google Scholar
  62. 62.
    Hartmann M, Merker J, Haefner R et al (2016) Biomechanics of walking in adolescents with progressive pseudorheumatoid arthropathy of childhood leads to physical activity recommendations as therapeutic focus. Clin Biomech 31:93–99.  https://doi.org/10.1016/j.clinbiomech.2015.09.015 Google Scholar
  63. 63.
    Kiliç G, Kiliç E, Akgül Ö et al (2016) An unusual coexistence of progressive pseudorheumatoid dysplasia and relapsing polychondritis. Arch Rheumatol 31:290–294.  https://doi.org/10.5606/ArchRheumatol.2016.5994 Google Scholar
  64. 64.
    Yan W, Dai J, Xu Z et al (2016) Novel WISP3 mutations causing progressive pseudorheumatoid dysplasia in two Chinese families. Hum Genome Var 3:16041.  https://doi.org/10.1038/hgv.2016.41 Google Scholar
  65. 65.
    Bradley JD (1987) Pseudoseptic pseudogout in progressive pseudorheumatoid arthritis of childhood. Ann Rheum Dis 46:709–712.  https://doi.org/10.1136/ard.46.9.709 Google Scholar
  66. 66.
    Yue H, Zhang ZL, He JW (2009) Identification of novel mutations in WISP3 gene in two unrelated Chinese families with progressive pseudorheumatoid dysplasia. Bone 44:547–554.  https://doi.org/10.1016/j.bone.2008.11.005 Google Scholar
  67. 67.
    Ehl S, Uhl M, Berner R et al (2004) Clinical, radiographic, and genetic diagnosis of progressive pseudorheumatoid dysplasia in a patient with severe polyarthropathy. Rheumatol Int 24:53–56.  https://doi.org/10.1007/s00296-003-0341-0 Google Scholar
  68. 68.
    Yildizgoren MT, Sahin A, Osmanoglu K, Turhanoglu AD (2015) Progressive pseudorheumatoid dysplasia with delayed diagnosis. JCR J Clin Rheumatol 21:329.  https://doi.org/10.1097/RHU.0000000000000282 Google Scholar
  69. 69.
    Rezai-Delui H, Mamoori G, Sadri-Mahvelati E, Noori NM (1994) Progressive pseudorheumatoid chondrodysplasia: a report of nine cases in three families. Skelet Radiol 23:411–419Google Scholar
  70. 70.
    Kozlowski K, Kennedy J, Lewis IC (1986) Radiographic features of progressive pseudorheumatoid arthritis. Australas Radiol 30:244–250Google Scholar
  71. 71.
    Wickrematilake G (2017) Progressive pseudorheumatoid dysplasia or JIA? Case Rep Rheumatol 2017:1609247.  https://doi.org/10.1155/2017/1609247 Google Scholar
  72. 72.
    Chakraborty PP, Biswas SN, Patra S, Santra G (2016) Progressive pseudorheumatoid dysplasia: a close mimicker of juvenile idiopathic arthritis. BMJ Case Rep 2016:1–2.  https://doi.org/10.1136/bcr-2016-214849 Google Scholar
  73. 73.
    Legius E, Mulier M, van Damme B, Fryns JP (1993) Progressive pseudorheumatoid arthritis of childhood (PPAC) and normal adult height. Clin Genet 44:152–155.  https://doi.org/10.1111/j.1399-0004.1993.tb03868.x Google Scholar
  74. 74.
    Liu L, Li N, Zhao Z et al (2015) Novel WISP3 mutations causing spondyloepiphyseal dysplasia tarda with progressive arthropathy in two unrelated Chinese families. Jt Bone Spine 82:125–128.  https://doi.org/10.1016/j.jbspin.2014.10.005 Google Scholar
  75. 75.
    Nassar K, Rachidi W, Janani S, Mkinsi O (2015) Dysplasie polyépiphysaire pseudorhumatoïde, destructrice. Press Medicale 44:961–964.  https://doi.org/10.1016/j.lpm.2015.03.017 Google Scholar
  76. 76.
    Oestreich AE (2002) Mega os trigonum in progressive pseudorheumatoid dysplasia. Pediatr Radiol 32:46–48.  https://doi.org/10.1007/s00247-001-0576-4 Google Scholar
  77. 77.
    Urtizberea JA, Thambyayah M, Nishino I, Megarbane A (2005) Non-collagenic etiologies of muscle weakness with joint deformities: about two paradigmatic case reports. Acta Myol 24:78–79Google Scholar
  78. 78.
    Chouery E, Corbani S, Dahmen J et al (2017) Progressive pseudorheumatoid dysplasia in North and West Africa: clinical description in ten patients with mutations of WISP3. Egypt J Med Hum Genet 18:299–303.  https://doi.org/10.1016/j.ejmhg.2016.11.004 Google Scholar
  79. 79.
    Winchester P, Grossman H, Lim WN, Danes BS (1969) A new acid mucopolysaccharidosis with skeletal deformities simulating rheumatoid arthritis. Am J Roentgenol Radium Ther Nucl Med 106:121–128Google Scholar
  80. 80.
    Kozlowski K, Marik I, Marikova O et al (2004) Czech dysplasia metatarsal type. Am J Med Genet 129 A:87–91.  https://doi.org/10.1002/ajmg.a.30132 Google Scholar
  81. 81.
    Tzschach A, Tinschert S, Kaminsky E et al (2008) Czech dysplasia: report of a large family and further delineation of the phenotype. Am J Med Genet Part A 146:1859–1864.  https://doi.org/10.1002/ajmg.a.32389 Google Scholar
  82. 82.
    Tiller GE, Polumbo PA, Weis MA et al (1995) Dominant mutations in the type II collagen gene, COL2A1, produce spondyloepimetaphyseal dysplasia, Strudwick type. Nat Genet 11:87–89.  https://doi.org/10.1038/ng0995-87 Google Scholar
  83. 83.
    Marik I, Marikova O, Zemkova D et al (2004) Dominantly inherited progressive pseudorheumatoid dysplasia with hypoplastic toes. Skelet Radiol 33:157–164.  https://doi.org/10.1007/s00256-003-0708-z Google Scholar
  84. 84.
    Walter K, Tansek M, Tobias ES et al (2007) COL2A1-related skeletal dysplasias with predominant metaphyseal involvement. Am J Med Genet Part A 143A:161–167.  https://doi.org/10.1002/ajmg.a.31516 Google Scholar
  85. 85.
    Robin NH, Moran RT, Ala-Kokko L (2000) Stickler syndrome. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, Seattle, WA, pp 1993–2018Google Scholar
  86. 86.
    Jurgens J, Sobreira N, Modaff P, et al (2015) Novel COL2A1 Variant (c.619G>A, p.Gly207Arg) manifesting as a phenotype similar to progressive pseudorheumatoid dysplasia and spondyloepiphyseal dysplasia, stanescu type. Hum Mutat 36:1004–1008.  https://doi.org/10.1002/humu.22839 Google Scholar
  87. 87.
    Isidor B, Poignant S, Picherot G et al (2012) Progressive polyepiphyseal dysplasia with arthropathy: a distinct disorder from idiopathic juvenile arthritis and pseudorheumatoid dysplasia? Am J Med Genet Part A 158 A:1754–1758.  https://doi.org/10.1002/ajmg.a.35424 Google Scholar
  88. 88.
    Pedini N, Putz P (2010) Progressive pseudorheumatoid chondrodysplasia. Case report. Rev Med Brux 31:533–537Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
  2. 2.Division of Genetic MedicineCentre Hospitalier Universitaire VaudoisLausanneSwitzerland

Personalised recommendations