Advertisement

Rheumatology International

, Volume 39, Issue 1, pp 89–96 | Cite as

Comparison of different treatment approaches of pediatric chronic non-bacterial osteomyelitis

  • Mikhail M. KostikEmail author
  • Olga L. Kopchak
  • Irina A. Chikova
  • Eugenia A. Isupova
  • Alexander Y. Mushkin
Observational Research

Abstract

Chronic non-bacterial osteomyelitis (CNO) is a chronic inflammatory bone disease which usually manifests in children and adolescents. There are a few data about pathogenesis and treatment. The aim of the study to compare the efficacy of different treatment approaches in pediatric CNO cohort patient. Fifty two children (25 boys and 27 girls) with CNO with average age at the onset of the disease 8.4 years (5.4; 11.0), number of foci − 3.0 (2.0; 6.0, incl. multifocal cases in 80.8%). Non-steroid anti-inflammatory drugs (NSAID) was the first-line treatment for non-vertebral cases, as well as pamidronate (PAM) for vertebral involvement. Second-line treatment includes sulfasalazine (SSZ), methotrexate (MTX), PAM and tumor necrosis factor-α inhibitors (TNFα-inh). We evaluated the dynamics of pain, patient’s and physician’s (MDVAS) assessment with visual-analog scale (VAS) and ability to each medication to achieve remission of CNO activity. According to the NSAID, MTX, SSZ, PAM and TNFα-inh groups the following data were registered: patient’s VAS: − 14.2% (p = 0.05), − 50.0% (p = 0.04), − 23.1 (p = 0.89), − 83.3% (p = 0.0001), − 73.6% (p = 0.0007); painVAS: − 21.9% (p = 0.01), − 18.6% (p = 0.13), + 36.4 (p = 0.89), − 79.7% (p = 0.00016), − 74.1%, (p = 0.0015); MDVAS: − 13.8% (p = 0.13); − 56.4% (p = 0.09), + 30.8% (p = 0.89), − 74.7%, (p = 0.0001), − 82.1 (p = 0.0015) respectively. The ability of each treatment strategy to achieve the CNO remission was 52.6%, 44.4%, 57,1%, 88.8% and 73.3%, respectively (log-rank test, p = 0.001). The efficacy of treatment approaches for CNO depended on the severity of the disease. NSAID, methotrexate, and sulfasalazine were effective in forms without spine involvement, but pamidronate and TNF-a inhibitors were useful in vertebral forms of CNO. Pamidronate and TNF-a inhibitors more extensively suppressed CNO activity. The randomized controlled trials for assessment of the efficacy and safety of these medications is mandatory to confirm these results.

Keywords

Chronic non-bacterial osteomyelitis Pamidronate TNFα-inhibitors 

Notes

Author contributions

All authors were involved in drafting the article or revising it critically. All authors approved the final version to be submitted for publication. Dr. Kostik, Dr. Kopchak, and Dr. Mushkin had full access to all of the data in the study and took responsibility for the integrity of the data and the accuracy of the data analysis. Study conception and design: Kostik, Kopchak, Mushkin. Acquisition of data: Kostik, Kopchak, Chikova, Isupova. Analysis and interpretation of data: Kostik, Kopchak, Mushkin.

Funding

This work supported by the Russian Foundation for Basic Research (Grant No. 18-515-57001).

Compliance with ethical standards

Informed consent

Informed consent obtained from all parents/guardians of minors participating in the study according to the declaration of Helsinki.

Ethical approval

The study was approved by the local Ethics Committee of St.-Petersburg State Pediatric University (protocol number 10/8 from 23.10.2017).

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Stern SH, Ferguson PJ (2013) Autoinflammatory bone diseases. Rheum Dis Clin North Am 39:735–749CrossRefGoogle Scholar
  2. 2.
    Wipff J, Costantino F, Lemelle I, Pajot C, Duquesne A, Lorrot M, Faye A, Bader-Meunier B, Brochard K, Despert V, Jean S, Grall-Lerosey M, Marot Y, Nouar D, Pagnier A, Quartier P, Job-Deslandre C (2015) A large national cohort of French patients with chronic recurrent multifocal osteitis. Arthritis Rheumatol 67:1128–1137CrossRefGoogle Scholar
  3. 3.
    Jansson A, Renner ED, Ramser J, Mayer A, Haban M, Meindl A, Grote V, Diebold J, Jansson V, Schneider K, Belohradsky BH (2007) Classification of non-bacterial osteitis retrospective study of clinical, immunological and genetic aspects in 89 patients. Rheumatology 46:154–160CrossRefGoogle Scholar
  4. 4.
    Laxer RM, Shore AD, Manson D, King S, Silverman ED, Wilmot DM (1988) Chronic recurrent multifocal osteomyelitis and psoriasis—a report of a new association and review of related disorders. Semin Arthritis Rheum 17:260–270CrossRefGoogle Scholar
  5. 5.
    Schilling F, Marker-Hermann E (2003) Chronic recurrent multifocal osteomyelitis in association with chronic inflammatory bowel disease: entheropathic CRMO. Z Rheumatol 62:527–538CrossRefGoogle Scholar
  6. 6.
    Borzutzky A, Stern S, Reiff A, Zurakowski D, Steinberg EA, Dedeoglu F, Sundel RP (2012) Pediatric chronic nonbacterial osteomyelitis. Pediatrics 130(5):e1190–e1197.  https://doi.org/10.1542/peds.2011-3788 CrossRefGoogle Scholar
  7. 7.
    Hofmann SR, Schwarz T, Möller JC, Morbach H, Schnabel A, Rösen-Wolff A, Girschick HJ, Hedrich CM (2011) Chronic non-bacterial osteomyelitis is associated with impaired Sp1 signaling, reduced IL10 promoter phosphorylation and reduced myeloid IL-10 expression. Clin Immunol 141:317–327CrossRefGoogle Scholar
  8. 8.
    Hofmann SR, Rösen-Wolff A, Tsokos GC, Hedrich CM (2012) Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin Immunol 143:116–127CrossRefGoogle Scholar
  9. 9.
    Scianaro R, Insalaco A, Bracci Laudiero L, De Vito R, Pezzullo M, Teti A, De Benedetti F, Prencipe G (2014) Deregulation of the IL-1β axis in chronic recurrent multifocal osteomyelitis. Pediatr Rheumatol 12:30.  https://doi.org/10.1186/1546-0096-12-30 CrossRefGoogle Scholar
  10. 10.
    Morbach H, Hedrich CM, Beer M, Girschick HJ (2013) Autoinflammatory bone disorders. Clin Immunol 147:185–196CrossRefGoogle Scholar
  11. 11.
    Eleftheriou D, Gerschman T, Sebire N, Woo P, Pilkington CA, Brogan PA (2010) Biologic therapy in refractory chronic non-bacterial osteomyelitis of childhood. Rheumatology 49(8):1505–1512CrossRefGoogle Scholar
  12. 12.
    Tronconi E, Miniaci A, Baldazzi M, Greco L, Pession A (2018) Biologic treatment for chronic recurrent multifocal osteomyelitis: report of four cases and review of the literature. Rheumatol Int 38:153–160CrossRefGoogle Scholar
  13. 13.
    Sato H, Wada Y, Hasegawa E, Nozawa Y, Nakatsue T, Ito T, Kuroda T, Saeki T, Umezu H, Suzuki Y, Nakano M, Narita I (2017) Adult-onset chronic recurrent multifocal osteomyelitis with high intensity of muscles detected by magnetic resonance imaging, successfully controlled with tocilizumab. Intern Med 56:2353–2360CrossRefGoogle Scholar
  14. 14.
    Gabay C, Palmer G (2009) Mutations in the IL1RN locus lead to autoinflammation. Nat Rev Rheumatol 9:480–482CrossRefGoogle Scholar
  15. 15.
    Herlin T, Fiirgaard B, Bjerre M, Kerndrup G, Hasle H, Bing X, Ferguson PJ (2013) Efficacy of anti-IL-1 treatment in Majeed syndrome. Ann Rheum Dis 72:410–413CrossRefGoogle Scholar
  16. 16.
    Aksentijevich I, Masters SL, Ferguson PJ et al (2009) Autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med 360:2426–2437CrossRefGoogle Scholar
  17. 17.
    Girschick H, Finetti M, Orlando F, Schalm S, Insalaco A, Ganser G, Nielsen S, Herlin T, Koné-Paut I, Martino S, Cattalini M, Anton J, Mohammed Al-Mayouf S, Hofer M, Quartier P, Boros C, Kuemmerle-Deschner J, Pires Marafon D, Alessio M, Schwarz T, Ruperto N, Martini A, Jansson A, Gattorno M (2018) The multifaceted presentation of chronic recurrent multifocal osteomyelitis: a series of 486 cases from the Eurofever international registry. Paediatric Rheumatology International Trials Organisation (PRINTO) and the Eurofever registry. Rheumatology 57(8):1504.  https://doi.org/10.1093/rheumatology/key143 CrossRefGoogle Scholar
  18. 18.
    Jansson AF, Müller TH, Gliera L, Ankerst DP, Wintergerst U, Belohradsky BH, Jansson V (2009) Clinical score for nonbacterial osteitis in children and adults. Arthritis Rheum 60:1152–1159CrossRefGoogle Scholar
  19. 19.
    Beck C, Morbach H, Beer M, Stenzel M, Tappe D, Gattenlöhner S, Hofmann U, Raab P, Girschick HJ (2010) Chronic nonbacterial osteomyelitis in childhood: prospective follow-up during the first year of anti-inflammatory treatment. Arthritis Res Ther 12(2):R74CrossRefGoogle Scholar
  20. 20.
    Hospach T, Langendoerfer M, von Kalle T, Maier J, Dannecker GE (2010) Spinal involvement in chronic recurrent multifocal osteomyelitis (CRMO) in childhood and effect of pamidronate. Eur J Pediatr 169:1105–1111CrossRefGoogle Scholar
  21. 21.
    Schnabel A, Range U, Hahn G, Berner R, Hedrich CM (2017) Treatment response and longterm outcomes in children with chronic nonbacterial osteomyelitis. J Rheumatol 44:1058–1065CrossRefGoogle Scholar
  22. 22.
    Roderick MR, Shah R, Rogers V, Finn A, Ramanan AV (2016) Chronic recurrent multifocal osteomyelitis (CRMO)—advancing the diagnosis. Pediatr Rheumatol 14:47.  https://doi.org/10.1186/s12969-016-0109-1 CrossRefGoogle Scholar
  23. 23.
    Kaiser D, Bolt I, Hofer M, Relly C, Berthet G, Bolz D, Saurenmann T (2015) Chronic nonbacterial osteomyelitis in children: a retrospective multicenter study. Pediatr Rheumatol Online J 13:25.  https://doi.org/10.1186/s12969-015-0023-y CrossRefGoogle Scholar
  24. 24.
    Abril JC, Ramirez A (2007) Successful treatment of chronic recurrent multifocal osteomyelitis with indometacin. J Pediatr Orthop 27:587–591CrossRefGoogle Scholar
  25. 25.
    Bellido T, Plotkin LI (2011) Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone 49:50–55CrossRefGoogle Scholar
  26. 26.
    Santra G, Sarkar RN, Phaujdar S, Banerjee S, Siddhanta S (2010) Assessment of the efficacy of pamidronate in ankylosing spondylitis: an open prospective trial. Singap Med J 51:883–887Google Scholar
  27. 27.
    Miettunen P, Wei X, Kaura D, Reslan WA, Aguirre AN, Kellner JD (2009) Dramatic pain relief and resolution of bone inflammation following pamidronate in 9 pediatric patients with persistent chronic recurrent multifocal osteomyelitis (CRMO). Pediatr Rheumatol 7:2.  https://doi.org/10.1186/1546-0096-7-2 CrossRefGoogle Scholar
  28. 28.
    Hofmann C, Wurm M, Schwarz T, Neubauer H, Beer M, Girschick H, Morbach H (2014) A standardized clinical and radiological follow-up of patients with chronic non-bacterial osteomyelitis treated with pamidronate. Clin Exp Rheumatol 32(4):604–609Google Scholar
  29. 29.
    Zhao Y, Wu EY, Oliver MS, Cooper AM, Basiaga ML, Vora SS, Lee TC, Fox E, Amarilyo G, Stern SM, Dvergsten JA, Haines KA, Rouster-Stevens KA, Onel KB, Cherian J, Hausmann JS, Miettunen P, Cellucci T, Nuruzzaman F, Taneja A, Barron KS, Hollander MC, Lapidus SK, Li SC, Ozen S, Girschick H, Laxer RM, Dedeoglu F, Hedrich CM, Ferguson PJ, Chronic Nonbacterial Osteomyelitis/Chronic Recurrent Multifocal Osteomyelitis Study Group and the Childhood Arthritis and Rheumatology Research Alliance Scleroderma, Vasculitis, Autoinflammatory and Rare Diseases Subcommittee (2017) Consensus treatment plans for chronic nonbacterial osteomyelitis refractory to nonsteroidal antiinflammatory drugs and/or with active spinal lesions. Arthritis Care Res (Hoboken).  https://doi.org/10.1002/acr.23462 Google Scholar
  30. 30.
    Papapoulos SE, Cremers SC (2007) Prolonged bisphosphonate release after treatment in children. N Engl J Med 356:1075–1076CrossRefGoogle Scholar
  31. 31.
    Patlas N, Golomb G, Yaffe P, Pinto T, Breuer E, Ornoy A (1999) Transplacental effects of bisphosphonates on fetal skeletal ossification and mineralization in rats. Teratology 60:68–73CrossRefGoogle Scholar
  32. 32.
    Minsker DH, Manson JM, Peter CP (1993) Effects of the bisphosphonate, alendronate, on parturition in the rat. Toxicol Appl Pharmacol 121:217–223CrossRefGoogle Scholar
  33. 33.
    Graepel P, Bentley P, Fritz H, Miyamoto M, Slater SR (1992) Reproduction toxicity studies with pamidronate. Arzneimittelforschung 42:654–667Google Scholar
  34. 34.
    Djokanovic N, Klieger-Grossmann C, Koren G (2008) Does treatment with bisphosphonates endanger the human pregnancy? Obstet Gynaecol Can 30:1146–1148CrossRefGoogle Scholar
  35. 35.
    Green SB, Pappas AL (2014) Effects of maternal bisphosphonate use on fetal and neonatal outcomes. Health Syst Pharm 71:2029–2036CrossRefGoogle Scholar
  36. 36.
    Deutschmann A, Mache CJ, Bodo K, Zebedin D, Ring E (2005) Successful treatment of chronic recurrent multifocal osteomyelitis with tumor necrosis factor alpha blockage. Pediatrics 116:1231–1233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Saint-Petersburg State Pediatric Medical UniversitySaint PetersburgRussian Federation
  2. 2.Kirov’s Regional Children’s HospitalKirovRussian Federation
  3. 3.Science Research Institute of PhthisiopulmonologySaint PetersburgRussian Federation

Personalised recommendations