Advertisement

Osteochondritis dissecans shows a severe course and poor outcome in patients with juvenile idiopathic arthritis: a matched pair study of 22 cases

  • Hannes Kubo
  • Prasad Thomas Oommen
  • Martin Hufeland
  • Philipp Heusch
  • Hans-Juergen Laws
  • Ruediger Krauspe
  • Hakan Pilge
Observational Research
  • 28 Downloads

Abstract

Juvenile osteochondritis dissecans (JOCD) and juvenile idiopathic arthritis (JIA) are both common diseases which may affect joints and bony structures in pediatric patients. In some cases, JOCD and JIA occur at the same time. In this study, the course of JOCD in patients with JIA was therefore evaluated to provide possible recommendations for further treatment opportunities and control examinations. From 06/2012 to 03/2018 55 children with JOCD with or without JIA were examined. Inclusion criteria were: (1) age ≤ 16 years, (2) diagnosis of a JOCD with or without JIA and (3) two routine MRI controls. The JOCD evaluation based on the classification according to Bruns and the measurement of the largest extent via MRI. 18 of these 55 children met our criteria: 11 JOCD findings of 7 patients with JIA (group A) were matched according to age and localization of JOCD to 11 patients without JIA (group B). Mean age of disease onset of JIA was 8.2 years (oligo JIA) and of JOCD 11.6 years. The mean time follow-up was 17.7 months. At all observation time points more JOCD findings (with stage III° and IV°, respectively) along with a significant deterioration was seen in group A compared to group B. The comparison of the last MRI control between group A and group B shows a significant smaller defect size (decrease of 54.5%, p = 0.028) in group B (97.9 ± 48.9 mm2) as in group A (185.1 ± 102.9 mm2). In comparison of first (169.7 ± 84.2 mm2) and last MRI (97.9 ± 48.9 mm2) a significant decrease in lesion size of JOCD in group B was seen (decrease of 58.4%, p = 0.048). Patients with JIA show a more progressive and severe course of JOCD. Therefore, we recommend (1) the early use of MRI in patients with JIA and persistent joint pain to detect potential JOCD and (2) in presence of JIA and JOCD regular MRI follow-up controls to identify deteriorating JOCD findings and prevent early joint destruction in pediatric patients.

Keywords

Osteochondritis dissecans Juvenile idiopathic arthritis MRI Progress 

Notes

Author contributions

HK and PO analyzed data and wrote the paper. MH and HJL collected data. PH analyzed data. RK and HP have initiated and supervised the project. HP revised the manuscript.

Funding

No fundings.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Schenck RC, Goodnight JM (1996) Osteochondritis dissecans. J Bone Jt Surg Am 78:439–456CrossRefGoogle Scholar
  2. 2.
    Hefti F, Beguiristain J, Krauspe R et al (1999) Osteochondritis dissecans: a multicenter study of the European Pediatric Orthopedic Society. J Pediatr Orthop Part B 8:231–245Google Scholar
  3. 3.
    Hashimoto Y, Yoshida G, Tomihara T et al (2008) Bilateral osteochondritis dissecans of the lateral femoral condyle following bilateral total removal of lateral discoid meniscus: a case report. Arch Orthop Trauma Surg 128:1265–1268.  https://doi.org/10.1007/s00402-007-0499-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Mubarak SJ, Carroll NC (1981) Juvenile osteochondritis dissecans of the knee: etiology. Clin Orthop 157:200–211Google Scholar
  5. 5.
    Camathias C, Hirschmann MT, Vavken P et al (2014) Meniscal suturing versus screw fixation for treatment of osteochondritis dissecans: clinical and magnetic resonance imaging results. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 30:1269–1279.  https://doi.org/10.1016/j.arthro.2014.05.010 CrossRefGoogle Scholar
  6. 6.
    Carey JL, Wall EJ, Grimm NL et al (2016) Novel arthroscopic classification of osteochondritis dissecans of the knee: a multicenter reliability study. Am J Sports Med 44:1694–1698.  https://doi.org/10.1177/0363546516637175 CrossRefPubMedGoogle Scholar
  7. 7.
    De Smet AA, Ilahi OA, Graf BK (1996) Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skelet Radiol 25:159–163CrossRefGoogle Scholar
  8. 8.
    O’Connor MA, Palaniappan M, Khan N, Bruce CE (2002) Osteochondritis dissecans of the knee in children. A comparison of MRI and arthroscopic findings. J Bone Jt Surg Br 84:258–262CrossRefGoogle Scholar
  9. 9.
    Bruns J, Werner M, Habermann C (2017) Osteochondritis dissecans: etiology, pathology, and imaging with a special focus on the knee joint. Cartilage 1947603517715736.  https://doi.org/10.1177/1947603517715736
  10. 10.
    Weiss JM, Nikizad H, Shea KG et al (2016) The incidence of surgery in osteochondritis dissecans in children and adolescents. Orthop J Sports Med 4:2325967116635515.  https://doi.org/10.1177/2325967116635515 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ravelli A, Martini A (2007) Juvenile idiopathic arthritis. Lancet Lond Engl 369:767–778.  https://doi.org/10.1016/S0140-6736(07)60363-8 CrossRefGoogle Scholar
  12. 12.
    Petty RE, Southwood TR, Manners P et al (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31:390–392PubMedGoogle Scholar
  13. 13.
    Cobb JE, Hinks A, Thomson W (2014) The genetics of juvenile idiopathic arthritis: current understanding and future prospects. Rheumatol Oxf Engl 53:592–599.  https://doi.org/10.1093/rheumatology/ket314 CrossRefGoogle Scholar
  14. 14.
    van Loosdregt J, van Wijk F, Prakken B, Vastert B (2017) Update on research and clinical translation on specific clinical areas from biology to bedside: unpacking the mysteries of juvenile idiopathic arthritis pathogenesis. Best Pract Res Clin Rheumatol 31:460–475.  https://doi.org/10.1016/j.berh.2018.02.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Giancane G, Alongi A, Ravelli A (2017) Update on the pathogenesis and treatment of juvenile idiopathic arthritis. Curr Opin Rheumatol 29:523–529.  https://doi.org/10.1097/BOR.0000000000000417 CrossRefPubMedGoogle Scholar
  16. 16.
    Ravelli A, Consolaro A, Horneff G et al (2018) Treating juvenile idiopathic arthritis to target: recommendations of an international task force. Ann Rheum Dis 77:819–828.  https://doi.org/10.1136/annrheumdis-2018-213030 PubMedGoogle Scholar
  17. 17.
    Dueckers G, Guellac N, Arbogast M et al (2012) Evidence and consensus based GKJR guidelines for the treatment of juvenile idiopathic arthritis. Clin Immunol Orlando Fla 142:176–193.  https://doi.org/10.1016/j.clim.2011.10.003 CrossRefGoogle Scholar
  18. 18.
    Kröger L, Piippo-Savolainen E, Tyrväinen E et al (2013) Osteochondral lesions in children with juvenile idiopathic arthritis. Pediatr Rheumatol Online J 11:18.  https://doi.org/10.1186/1546-0096-11-18 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pradsgaard D, Spannow AH, Heuck C, Herlin T (2013) Decreased cartilage thickness in juvenile idiopathic arthritis assessed by ultrasonography. J Rheumatol 40:1596–1603.  https://doi.org/10.3899/jrheum.121077 CrossRefPubMedGoogle Scholar
  20. 20.
    Spîrchez M, Samaşca G, Iancu M et al (2012) Relation of interleukin-6, TNF-alpha and interleukin-1 alpha with disease activity and severity in juvenile idiopathic arthritis patients. Clin Lab 58:253–260PubMedGoogle Scholar
  21. 21.
    Akeson G, Malemud CJ (2017) A Role for soluble IL-6 receptor in osteoarthritis. J Funct Morphol Kinesiol.  https://doi.org/10.3390/jfmk2030027 PubMedPubMedCentralGoogle Scholar
  22. 22.
    Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113.  https://doi.org/10.1186/ar148 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ryu J-H, Yang S, Shin Y et al (2011) Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum 63:2732–2743.  https://doi.org/10.1002/art.30451 CrossRefPubMedGoogle Scholar
  24. 24.
    De Benedetti F, Brunner HI, Ruperto N et al (2012) Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med 367:2385–2395.  https://doi.org/10.1056/NEJMoa1112802 CrossRefPubMedGoogle Scholar
  25. 25.
    Yokota S, Imagawa T, Mori M et al (2008) Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet Lond Engl 371:998–1006.  https://doi.org/10.1016/S0140-6736(08)60454-7 CrossRefGoogle Scholar
  26. 26.
    Brunner HI, Ruperto N, Zuber Z et al (2015) Efficacy and safety of tocilizumab in patients with polyarticular-course juvenile idiopathic arthritis: results from a phase 3, randomised, double-blind withdrawal trial. Ann Rheum Dis 74:1110–1117.  https://doi.org/10.1136/annrheumdis-2014-205351 CrossRefPubMedGoogle Scholar
  27. 27.
    Nishimoto N, Yoshizaki K, Miyasaka N et al (2004) Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 50:1761–1769.  https://doi.org/10.1002/art.20303 CrossRefPubMedGoogle Scholar
  28. 28.
    Habib GS (2009) Systemic effects of intra-articular corticosteroids. Clin Rheumatol 28:749–756.  https://doi.org/10.1007/s10067-009-1135-x CrossRefPubMedGoogle Scholar
  29. 29.
    Barton KI, Heard BJ, Sevick JL et al (2018) Posttraumatic osteoarthritis development and progression in an ovine model of partial anterior cruciate ligament transection and effect of repeated intra-articular methylprednisolone acetate injections on early disease. Am J Sports Med.  https://doi.org/10.1177/0363546518765098 PubMedGoogle Scholar
  30. 30.
    Chen Z, Zhao X, Li Y et al (2018) Course-, dose-, and stage-dependent toxic effects of prenatal dexamethasone exposure on long bone development in fetal mice. Toxicol Appl Pharmacol.  https://doi.org/10.1016/j.taap.2018.05.005 CrossRefGoogle Scholar
  31. 31.
    Habib GS, Saliba W, Nashashibi M (2010) Local effects of intra-articular corticosteroids. Clin Rheumatol 29:347–356.  https://doi.org/10.1007/s10067-009-1357-y CrossRefPubMedGoogle Scholar
  32. 32.
    Pradsgaard D, Fiirgaard B, Spannow AH et al (2015) Cartilage thickness of the knee joint in juvenile idiopathic arthritis: comparative assessment by ultrasonography and magnetic resonance imaging. J Rheumatol 42:534–540.  https://doi.org/10.3899/jrheum.140162 CrossRefPubMedGoogle Scholar
  33. 33.
    Spannow AH, Stenboeg E, Pfeiffer-Jensen M et al (2011) Ultrasound and MRI measurements of joint cartilage in healthy children: a validation study. Ultraschall Med Stuttg Ger 32(Suppl 1):S110–S116.  https://doi.org/10.1055/s-0029-1245374 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hannes Kubo
    • 1
  • Prasad Thomas Oommen
    • 2
  • Martin Hufeland
    • 1
  • Philipp Heusch
    • 3
  • Hans-Juergen Laws
    • 2
  • Ruediger Krauspe
    • 1
  • Hakan Pilge
    • 1
  1. 1.Department of Orthopaedics, Medical FacultyUniversity of DuesseldorfDüsseldorfGermany
  2. 2.Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Centre for Child and Adolescent HealthUniversity of DuesseldorfDüsseldorfGermany
  3. 3.Department of Radiology, Medical FacultyUniversity of DuesseldorfDüsseldorfGermany

Personalised recommendations