Serum adipokine levels and associations with patient-reported fatigue in systemic lupus erythematosus

  • Mary A. Mahieu
  • Grace E. Ahn
  • Joan S. Chmiel
  • Dorothy D. Dunlop
  • Irene B. Helenowski
  • Pamela Semanik
  • Jing Song
  • Susan Yount
  • Rowland W. Chang
  • Rosalind Ramsey-Goldman
Observational Research
  • 46 Downloads

Abstract

Physical activity ameliorates fatigue in systemic lupus erythematosus (SLE) patients by an unknown mechanism. Adipokines, which are influenced by adiposity and physical activity, may be associated with patient-reported fatigue. We describe cross-sectional associations between adipokines and fatigue, physical activity, and SLE disease activity. We measured adipokines, self-reported fatigue, and objective physical activity in 129 SLE patients. Fatigue was assessed with the Fatigue Severity Scale (FSS) and Patient Reported Outcomes Measurement Information System® (PROMIS®) Fatigue score. Disease activity was measured with the Safety of Estrogens in Systemic Lupus Erythematosus National Assessment-Systemic Lupus Erythematosus Disease Activity Index (SELENA-SLEDAI). Participants wore an accelerometer for 7 days to measure physical activity. Leptin, adiponectin, and resistin were measured in stored serum with a Luminex bead-based assay. Multivariable regression models assessed relationships between fatigue and adipokines, and Spearman correlation coefficients summarized associations between adipokines, physical activity, and SELENA-SLEDAI. Median adipokine levels were: leptin 30.5 ng/ml (Interquartile Range 14.0, 56.6), adiponectin 11.6 μg/ml (7.2, 16.8) and resistin 1.4 ng/ml (1.0, 2.2). Associations between adipokines and FSS or PROMIS fatigue were not significant. Body mass index (BMI) ≥ 30 kg/m2 was associated with FSS and PROMIS fatigue in regression analyses (p < 0.05). Weak correlations between leptin, adiponectin, leptin/adiponectin (L/A) ratio, and physical activity and between adiponectin and SELENA-SLEDAI score were not significant after adjusting for BMI. Adipokines were not associated with fatigue in SLE. Adipokines were correlated with physical activity (leptin, adiponectin, L/A ratio) and SLE disease activity (adiponectin), but most of these associations were explained by BMI.

Keywords

Systemic lupus erythematosus Adipokines Fatigue Physical activity 

Notes

Acknowledgements

The authors wish to thank Carla Cuda Ph.D. and Harris Perlman Ph.D. for their assistance with the Luminex assay for adipokine measurement.

Compliance with ethical standards

Conflict of interest

None of the authors have conflicts of interest to disclose.

References

  1. 1.
    Lahita RG (2011) The clinical presentation of systemic lupus erythematosus. In: Lahita RG, Tsokos G, Buyon J, Koike T (eds) Systemic lupus erythematosus, 5th edn. Elsevier, San Diego, pp 525–539CrossRefGoogle Scholar
  2. 2.
    Tench CM, McCurdie I, White PD, D’Cruz DP (2000) The prevalence and associations of fatigue in systemic lupus erythematosus. Rheumatology 39(11):1249–1254CrossRefPubMedGoogle Scholar
  3. 3.
    Fonseca R, Bernardes M, Terroso G, de Sousa M, Figueiredo-Braga M (2014) Silent burdens in disease: fatigue and depression in SLE. Autoimmune Dis.  https://doi.org/10.1155/2014/790724PubMedPubMedCentralGoogle Scholar
  4. 4.
    Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD (1989) The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 46(10):1121–1123CrossRefPubMedGoogle Scholar
  5. 5.
    Bexelius C, Wachtmeister K, Skare P, Jonsson L, Vollenhoven R (2013) Drivers of cost and health-related quality of life in patients with systemic lupus erythematosus (SLE): a Swedish nationwide study based on patient reports. Lupus 22(8):793–801.  https://doi.org/10.1177/0961203313491849CrossRefPubMedGoogle Scholar
  6. 6.
    Yuen HK, Cunningham MA (2014) Optimal management of fatigue in patients with systemic lupus erythematosus: a systematic review. Ther Clin Risk Manag 10:775–786.  https://doi.org/10.2147/tcrm.s56063CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ahn GE, Ramsey-Goldman R (2012) Fatigue in systemic lupus erythematosus. Int J Clin Rheumatol 7(2):217–227.  https://doi.org/10.2217/ijr.12.4CrossRefGoogle Scholar
  8. 8.
    Mahieu MA, Ahn GE, Chmiel JS, Dunlop DD, Helenowski IB, Semanik P, Song J, Yount S, Chang RW, Ramsey-Goldman R (2016) Fatigue, patient reported outcomes, and objective measurement of physical activity in systemic lupus erythematosus. Lupus 25(11):1190–1199.  https://doi.org/10.1177/0961203316631632CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Del Prete A, Salvi V, Sozzani S (2014) Adipokines as potential biomarkers in rheumatoid arthritis. Med Inflamm.  https://doi.org/10.1155/2014/425068Google Scholar
  10. 10.
    Krysiak R, Handzlik-Orlik G, Okopien B (2012) The role of adipokines in connective tissue diseases. Eu J Nutr 51(5):513–528.  https://doi.org/10.1007/s00394-012-0370-0CrossRefGoogle Scholar
  11. 11.
    Santos FM, Telles RW, Lanna CC, Teixeira AL Jr, Miranda AS, Rocha NP, Ribeiro AL (2017) Adipokines, tumor necrosis factor and its receptors in female patients with systemic lupus erythematosus. Lupus 26(1):10–16.  https://doi.org/10.1177/0961203316646463CrossRefPubMedGoogle Scholar
  12. 12.
    Golbidi S, Laher I (2014) Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res.  https://doi.org/10.1155/2014/726861PubMedPubMedCentralGoogle Scholar
  13. 13.
    Vadacca M, Margiotta D, Rigon A, Cacciapaglia F, Coppolino G, Amoroso A, Afeltra A (2009) Adipokines and systemic lupus erythematosus: relationship with metabolic syndrome and cardiovascular disease risk factors. J Rheumatol 36(2):295–297.  https://doi.org/10.3899/jrheum.080503CrossRefPubMedGoogle Scholar
  14. 14.
    Vadacca M, Zardi EM, Margiotta D, Rigon A, Cacciapaglia F, Arcarese L, Buzzulini F, Amoroso A, Afeltra A (2013) Leptin, adiponectin and vascular stiffness parameters in women with systemic lupus erythematosus. Intern Emerg Med 8(8):705–712.  https://doi.org/10.1007/s11739-011-0726-0CrossRefPubMedGoogle Scholar
  15. 15.
    Sada KE, Yamasaki Y, Maruyama M, Sugiyama H, Yamamura M, Maeshima Y, Makino H (2006) Altered levels of adipocytokines in association with insulin resistance in patients with systemic lupus erythematosus. J Rheumatol 33(8):1545–1552PubMedGoogle Scholar
  16. 16.
    Chung CP, Long AG, Solus JF, Rho YH, Oeser A, Raggi P, Stein CM (2009) Adipocytokines in systemic lupus erythematosus: relationship to inflammation, insulin resistance and coronary atherosclerosis. Lupus 18(9):799–806.  https://doi.org/10.1177/0961203309103582CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    De Sanctis JB, Zabaleta M, Bianco NE, Garmendia JV, Rivas L (2009) Serum adipokine levels in patients with systemic lupus erythematosus. Autoimmunity 42(4):272–274CrossRefPubMedGoogle Scholar
  18. 18.
    Rovin BH, Song H, Hebert LA, Nadasdy T, Nadasdy G, Birmingham DJ, Yung Yu C, Nagaraja HN (2005) Plasma, urine, and renal expression of adiponectin in human systemic lupus erythematosus. Kidney Int 68(4):1825–1833.  https://doi.org/10.1111/j.1523-1755.2005.00601.xCrossRefPubMedGoogle Scholar
  19. 19.
    Prestes J, Shiguemoto G, Botero JP, Frollini A, Dias R, Leite R, Pereira G, Magosso R, Baldissera V, Cavaglieri C, Perez S (2009) Effects of resistance training on resistin, leptin, cytokines, and muscle force in elderly post-menopausal women. J Sports Sci 27(14):1607–1615.  https://doi.org/10.1080/02640410903352923CrossRefPubMedGoogle Scholar
  20. 20.
    Almehed K, d’Elia HF, Bokarewa M, Carlsten H (2008) Role of resistin as a marker of inflammation in systemic lupus erythematosus. Arthritis Res Ther 10(1):R15.  https://doi.org/10.1186/ar2366CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hutcheson J, Ye Y, Han J, Arriens C, Saxena R, Li QZ, Mohan C, Wu T (2015) Resistin as a potential marker of renal disease in lupus nephritis. Clin Exp Immunol 179(3):435–443.  https://doi.org/10.1111/cei.12473CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huang Q, Tao SS, Zhang YJ, Zhang C, Li LJ, Zhao W, Zhao MQ, Li P, Pan HF, Mao C, Ye DQ (2015) Serum resistin levels in patients with rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Clin Rheumatol 34(10):1713–1720.  https://doi.org/10.1007/s10067-015-2955-5CrossRefPubMedGoogle Scholar
  23. 23.
    Piche T, Gelsi E, Schneider SM, Hebuterne X, Giudicelli J, Ferrua B, Laffont C, Benzaken S, Hastier P, Montoya ML, Longo F, Rampal P, Tran A (2002) Fatigue is associated with high circulating leptin levels in chronic hepatitis C. Gut 51(3):434–439CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    El-Gindy EM, Ali-Eldin FA, Meguid MA (2012) Serum leptin level and its association with fatigue in patients with chronic hepatitis C virus infection. Arab J Gastroenterol 13(2):54–57.  https://doi.org/10.1016/j.ajg.2012.05.001CrossRefPubMedGoogle Scholar
  25. 25.
    Piche T, Huet PM, Gelsi E, Barjoan EM, Cherick F, Caroli-Bosc FX, Hebuterne X, Tran A (2007) Fatigue in irritable bowel syndrome: characterization and putative role of leptin. Eur J Gastroenterol Hepatol 19(3):237–243.  https://doi.org/10.1097/01.meg.0000252627.50302.b4CrossRefPubMedGoogle Scholar
  26. 26.
    Stringer EA, Baker KS, Carroll IR, Montoya JG, Chu L, Maecker HT, Younger JW (2013) Daily cytokine fluctuations, driven by leptin, are associated with fatigue severity in chronic fatigue syndrome: evidence of inflammatory pathology. J Transl Med 11:93.  https://doi.org/10.1186/1479-5876-11-93CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bjersing JL, Erlandsson M, Bokarewa MI, Mannerkorpi K (2013) Exercise and obesity in fibromyalgia: beneficial roles of IGF-1 and resistin? Arthritis Res Ther 15(1):R34.  https://doi.org/10.1186/ar4187CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ahn GE, Chmiel JS, Dunlop DD, Helenowski IB, Semanik PA, Song J, Ainsworth B, Chang RW, Ramsey-Goldman R (2015) Self-reported and objectively measured physical activity in adults with systemic lupus erythematosus. Arthritis Care Res 67(5):701–707.  https://doi.org/10.1002/acr.22480CrossRefGoogle Scholar
  29. 29.
    Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25(11):1271–1277CrossRefPubMedGoogle Scholar
  30. 30.
    Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725.  https://doi.org/10.1002/art.1780400928CrossRefPubMedGoogle Scholar
  31. 31.
    Petri M, Kim MY, Kalunian KC, Grossman J, Hahn BH, Sammaritano LR, Lockshin M, Merrill JT, Belmont HM, Askanase AD, McCune WJ, Hearth-Holmes M, Dooley MA, Von Feldt J, Friedman A, Tan M, Davis J, Cronin M, Diamond B, Mackay M, Sigler L, Fillius M, Rupel A, Licciardi F, Buyon JP (2005) Combined oral contraceptives in women with systemic lupus erythematosus. N Engl J Med 353(24):2550–2558.  https://doi.org/10.1056/NEJMoa051135CrossRefPubMedGoogle Scholar
  32. 32.
    Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M, Bacon P, Bombardieri S, Hanly J, Hay E, Isenberg D, Jones J, Kalunian K, Maddison P, Nived O, Petri M, Richter M, Sanchez-Guerrero J, Snaith M, Sturfelt G, Symmons D, Zoma A (1996) The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 39(3):363–369CrossRefPubMedGoogle Scholar
  33. 33.
    Measurement of fatigue in systemic lupus erythematosus: a systematic review. (2007). Arthritis Rheum 57(8):1348–1357.  https://doi.org/10.1002/art.23113CrossRefGoogle Scholar
  34. 34.
    Riley WT, Rothrock N, Bruce B, Christodolou C, Cook K, Hahn EA, Cella D (2010) Patient-reported outcomes measurement information system (PROMIS) domain names and definitions revisions: further evaluation of content validity in IRT-derived item banks. Qual Life Res 19(9):1311–1321.  https://doi.org/10.1007/s11136-010-9694-5CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sasaki JE, John D, Freedson PS (2011) Validation and comparison of ActiGraph activity monitors. J Sci Med Sport Sports Med Aust 14(5):411–416.  https://doi.org/10.1016/j.jsams.2011.04.003CrossRefGoogle Scholar
  36. 36.
    Choi L, Liu Z, Matthews CE, Buchowski MS (2011) Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc 43(2):357–364.  https://doi.org/10.1249/MSS.0b013e3181ed61a3CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Choi L, Ward SC, Schnelle JF, Buchowski MS (2012) Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc 44(10):2009–2016.  https://doi.org/10.1249/MSS.0b013e318258cb36CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Carlton ED, Demas GE, French SS (2012) Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Hormones Behav 62(3):272–279.  https://doi.org/10.1016/j.yhbeh.2012.04.010CrossRefGoogle Scholar
  39. 39.
    Shattuck EC, Muehlenbein MP (2015) Human sickness behavior: ultimate and proximate explanations. Am J Phys Anthropol 157(1):1–18.  https://doi.org/10.1002/ajpa.22698CrossRefPubMedGoogle Scholar
  40. 40.
    Oeser A, Chung CP, Asanuma Y, Avalos I, Stein CM (2005) Obesity is an independent contributor to functional capacity and inflammation in systemic lupus erythematosus. Arthritis Rheum 52(11):3651–3659.  https://doi.org/10.1002/art.21400CrossRefPubMedGoogle Scholar
  41. 41.
    Chaiamnuay S, Bertoli AM, Fernandez M, Apte M, Vila LM, Reveille JD, Alarcon GS (2007) The impact of increased body mass index on systemic lupus erythematosus: data from LUMINA, a multiethnic cohort (LUMINA XLVI) [corrected]. J Clin Rheumatol 13(3):128–133.  https://doi.org/10.1097/RHU.0b013e3180645865CrossRefPubMedGoogle Scholar
  42. 42.
    Salvadori A, Fanari P, Brunani A, Marzullo P, Codecasa F, Tovaglieri I, Cornacchia M, Palmulli P, Longhini E (2015) Leptin level lowers in proportion to the amount of aerobic work after four weeks of training in obesity. Horm Metab Res 47(3):225–231.  https://doi.org/10.1055/s-0034-1395637PubMedGoogle Scholar
  43. 43.
    Hong HR, Jeong JO, Kong JY, Lee SH, Yang SH, Ha CD, Kang HS (2014) Effect of walking exercise on abdominal fat, insulin resistance and serum cytokines in obese women. J Exerc Nutr Biochem 18(3):277–285.  https://doi.org/10.5717/jenb.2014.18.3.277CrossRefGoogle Scholar
  44. 44.
    Kim DY, Seo BD, Kim DJ (2014) Effect of walking exercise on changes in cardiorespiratory fitness, metabolic syndrome markers, and high-molecular-weight adiponectin in obese middle-aged women. J Phys Ther Sci 26(11):1723–1727.  https://doi.org/10.1589/jpts.26.1723CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lakhdar N, Denguezli M, Zaouali M, Zbidi A, Tabka Z, Bouassida A (2014) Six months training alone or combined with diet alters HOMA-AD, HOMA-IR and plasma and adipose tissue adiponectin in obese women. Neuro Endocrinol Lett 35(5):373–379PubMedGoogle Scholar
  46. 46.
    Gondim OS, de Camargo VT, Gutierrez FA, Martins PF, Passos ME, Momesso CM, Santos VC, Gorjao R, Pithon-Curi TC, Cury-Boaventura MF (2015) Benefits of regular exercise on inflammatory and cardiovascular risk markers in normal weight, overweight and obese adults. PloS One 10(10):e0140596.  https://doi.org/10.1371/journal.pone.0140596CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Voss SC, Nikolovski Z, Bourdon PC, Alsayrafi M, Schumacher YO (2016) The effect of cumulative endurance exercise on leptin and adiponectin and their role as markers to monitor training load. Biol Sport 33(1):23–28.  https://doi.org/10.5604/20831862.1180173PubMedGoogle Scholar
  48. 48.
    Ahmadi N, Eshaghian S, Huizenga R, Sosnin K, Ebrahimi R, Siegel R (2011) Effects of intense exercise and moderate caloric restriction on cardiovascular risk factors and inflammation. Am J Med 124(10):978–982.  https://doi.org/10.1016/j.amjmed.2011.02.032CrossRefPubMedGoogle Scholar
  49. 49.
    McMahon M, Skaggs BJ, Sahakian L, Grossman J, FitzGerald J, Ragavendra N, Charles-Schoeman C, Chernishof M, Gorn A, Witztum JL, Wong WK, Weisman M, Wallace DJ, La Cava A, Hahn BH (2011) High plasma leptin levels confer increased risk of atherosclerosis in women with systemic lupus erythematosus, and are associated with inflammatory oxidised lipids. Ann Rheum Dis 70(9):1619–1624.  https://doi.org/10.1136/ard.2010.142737CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hirotsu C, Tufik S, Andersen ML (2015) Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci (Sao Paulo Braz) 8(3):143–152.  https://doi.org/10.1016/j.slsci.2015.09.002CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Rheumatology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Arthritis and Rheumatism AssociatesWheatonUSA
  3. 3.Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoUSA
  4. 4.Center for Healthcare Studies, Institute for Public Health and MedicineNorthwestern University Feinberg School of MedicineChicagoUSA
  5. 5.Department of Adult Health and Gerontological NursingRush University College of NursingChicagoUSA
  6. 6.Department of Medical Social SciencesNorthwestern University Feinberg School of MedicineChicagoUSA
  7. 7.Department of Physical Medicine and RehabilitationNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations