Advertisement

Rheumatology International

, Volume 37, Issue 11, pp 1891–1898 | Cite as

Serum serotonin levels and bone in rheumatoid arthritis patients

  • Miguel BernardesEmail author
  • Tiago Vieira
  • Raquel Lucas
  • Jorge Pereira
  • Lúcia Costa
  • Francisco Simões-Ventura
  • Maria João Martins
Biomarkers

Abstract

In rheumatoid arthritis (RA), a disease characterized by bone loss, increased levels of serotonin have been reported. Recent studies have demonstrated a role for circulating serotonin as a regulator of osteoblastogenesis, inhibiting bone formation. Thus, we measured serum serotonin levels (SSL) in a Portuguese sample of 205 RA patients and related these to anthropometric variables, disease parameters, serum bone biomarkers, and bone mineral density (BMD) assessed by dual-energy X-ray absorptiometry at several sites (total proximal femur, lumbar spine, left hand, and left second proximal phalange). SSL were inversely associated with body mass index (BMI) in RA women (r = − 0.218; p = 0.005), independent of exposure to biologics and/or bisphosphonates. Among biologic naïves, there was an inverse association between SSL and osteoprotegerin in RA women (r = − 0.260; p = 0.022). Serum β-CTX and dickkopf-1 were strongly associated with SSL in RA men not treated with bisphosphonates (r = 0.590; p < 0.001/r = 0.387; p = 0.031, respectively). There was also an inverse association between SSL and sclerostin in RA men (r = − 0.374; p < 0.05), stronger among biologic naïve or bisphosphonates-unexposed RA men. In crude models, SSL presented as a significant negative predictor of total proximal femur BMD in RA women as well as in postmenopausal RA women. After adjustment for BMI, disease duration, and years of menopause, SSL remained a significant negative predictor of total proximal femur BMD only in postmenopausal RA women. Our data reinforce a role, despite weak, for circulating serotonin in regulating bone mass in RA patients, with some differences in terms of gender and anatomical sites.

Keywords

DXA Biochemical markers of bone turnover Wnt/β-catenin/LRPs Other diseases and disorders of/related to bone Osteoimmunology 

Notes

Acknowledgements

Authors’ roles: MB conceived the idea of the study, designed the study, coordinated the project, participated in patient recruitment and in data acquisition, drafted the manuscript, and takes responsibility for the integrity of the data analysis. RL performed the statistical analysis, revised the manuscript, and takes responsibility for the integrity of the data analysis. TV and JP performed DXA evaluations and approved the final version of the manuscript. LC participated in patient recruitment and approved the final version of the manuscript. FSV coordinated the project, participated in patient recruitment and revised the manuscript. MJM conceived the idea of the study, coordinated the experimental work (ELISA), assisted in manuscript drafting, and takes responsibility for the integrity of the data analysis. The authors wish to acknowledge Associação Nacional de Reumatologia for the doctoral grant, Conceição Gonçalves (MSc) from the Laboratório Nobre in the Faculty of Medicine of the University of Porto, the nursing Service of Rheumatology Day Hospital of São João Hospital Center, and the clinicians from the Rheumatology Department of São João Hospital Center, especially Alexandra Bernardo (M.D.) and Sofia Pimenta (M.D.).

Funding

Associação Nacional de Reumatologia, the study sponsor, had no role in the study design; in the collection, analysis, and interpretation of the data; in the writing of the report; and in the decision to submit the paper for publication.

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflict of interests regarding the publication of this paper.

Ethical approval

The study protocol was approved by the local Ethical Committee, Comissão de Ética para a Saúde do Centro Hospitalar de São João do Porto, in accordance with the principles of the 1964 Declaration of Helsinki [38].

Supplementary material

296_2017_3836_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 32 kb)

References

  1. 1.
    Lee GS, Simpson C, Sun BH, Yao C, Foer D, Sullivan B et al (2014) Measurement of plasma, serum, and platelet serotonin in individuals with high bone mass and mutations in LRP5. J Bone Miner Res 29:976–981CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523CrossRefPubMedGoogle Scholar
  3. 3.
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA et al (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521CrossRefPubMedGoogle Scholar
  4. 4.
    Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D et al (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72:763–771CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Whyte MP, Reinus WH, Mumm S (2004) High-bone-mass disease and LRP5. N Engl J Med 350:2096–2099 (author reply -9)CrossRefPubMedGoogle Scholar
  6. 6.
    Goltzman D (2011) LRP5, serotonin, and bone: complexity, contradictions, and conundrums. J Bone Miner Res 26:1997–2001CrossRefPubMedGoogle Scholar
  7. 7.
    Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schutz G et al (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chang MK, Kramer I, Keller H, Gooi JH, Collett C, Jenkins D et al (2014) Reversing LRP5-dependent osteoporosis and SOST deficiency-induced sclerosing bone disorders by altering WNT signaling activity. J Bone Miner Res 29:29–42CrossRefPubMedGoogle Scholar
  9. 9.
    Karsenty G, Yadav VK (2011) Regulation of bone mass by serotonin: molecular biology and therapeutic implications. Annu Rev Med 62:323–331CrossRefPubMedGoogle Scholar
  10. 10.
    Yadav VK, Arantes HP, Barros ER, Lazaretti-Castro M, Ducy P (2010) Genetic analysis of Lrp5 function in osteoblast progenitors. Calcif Tissue Int 86:382–388CrossRefPubMedGoogle Scholar
  11. 11.
    Saarinen A, Saukkonen T, Kivela T, Lahtinen U, Laine C, Somer M et al (2010) Low density lipoprotein receptor-related protein 5 (LRP5) mutations and osteoporosis, impaired glucose metabolism and hypercholesterolaemia. Clin Endocrinol 72:481–488 (Oxf) CrossRefGoogle Scholar
  12. 12.
    Frost M, Andersen TE, Yadav V, Brixen K, Karsenty G, Kassem M (2010) Patients with high-bone-mass phenotype owing to Lrp5-T253I mutation have low plasma levels of serotonin. J Bone Miner Res 25:673–675CrossRefPubMedGoogle Scholar
  13. 13.
    Frost M, Andersen T, Gossiel F, Hansen S, Bollerslev J, van Hul W et al (2011) Levels of serotonin, sclerostin, bone turnover markers as well as bone density and microarchitecture in patients with high-bone-mass phenotype due to a mutation in Lrp5. J Bone Miner Res 26:1721–1728CrossRefPubMedGoogle Scholar
  14. 14.
    Modder UI, Achenbach SJ, Amin S, Riggs BL, Melton LJ 3rd, Khosla S (2010) Relation of serum serotonin levels to bone density and structural parameters in women. J Bone Miner Res 25:415–422CrossRefPubMedGoogle Scholar
  15. 15.
    Giovannini M, Valsasina R, Longhi R, Cesura AM, Galva MD, Riva E et al (1988) Serotonin and noradrenaline concentrations and serotonin uptake in platelets from hyperphenylalaninaemic patients. J Inherit Metab Dis 11:285–290CrossRefPubMedGoogle Scholar
  16. 16.
    Modan-Moses D, Vered I, Schwartz G, Anikster Y, Abraham S, Segev R et al (2007) Peak bone mass in patients with phenylketonuria. J Inherit Metab Dis 30:202–208CrossRefPubMedGoogle Scholar
  17. 17.
    Gustafsson BI, Thommesen L, Stunes AK, Tommeras K, Westbroek I, Waldum HL et al (2006) Serotonin and fluoxetine modulate bone cell function in vitro. J Cell Biochem 98:139–151CrossRefPubMedGoogle Scholar
  18. 18.
    Galli C, Macaluso G, Passeri G (2013) Serotonin: a novel bone mass controller may have implications for alveolar bone. J Negat Results Biomed 12:12CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bliziotes M (2010) Update in serotonin and bone. J Clin Endocrinol Metab 95:4124–4132CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yadav VK, Ducy P (2010) Lrp5 and bone formation: a serotonin-dependent pathway. Ann N Y Acad Sci 1192:103–109CrossRefPubMedGoogle Scholar
  21. 21.
    Kode A, Mosialou I, Silva BC, Rached MT, Zhou B, Wang J et al (2012) FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin. J Clin Invest 122:3490–3503CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z et al (2004) A mechanism for Wnt coreceptor activation. Mol Cell 13:149–156CrossRefPubMedGoogle Scholar
  23. 23.
    Sibilia V, Pagani F, Dieci E, Mrak E, Marchese M, Zarattini G et al (2013) Dietary tryptophan manipulation reveals a central role for serotonin in the anabolic response of appendicular skeleton to physical activity in rats. Endocrine 44:790–802CrossRefPubMedGoogle Scholar
  24. 24.
    Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR et al (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17:684–691CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Walsh JS, Newell-Price JD, DeBono M, Adaway J, Keevil B, Eastell R (2013) Circulating serotonin and bone density, structure, and turnover in carcinoid syndrome. J Clin Endocrinol Metab 98:2902–2907CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang Q, Chen D, Nicholson P, Cheng S, Alen M, Mao L et al (2014) The associations of serum serotonin with bone traits are age- and gender-specific. PLoS ONE 9:e109028CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Richards JB, Papaioannou A, Adachi JD, Joseph L, Whitson HE, Prior JC et al (2007) Effect of selective serotonin reuptake inhibitors on the risk of fracture. Arch Intern Med 167:188–194CrossRefPubMedGoogle Scholar
  28. 28.
    Diem SJ, Blackwell TL, Stone KL, Yaffe K, Haney EM, Bliziotes MM et al (2007) Use of antidepressants and rates of hip bone loss in older women: the study of osteoporotic fractures. Arch Intern Med 167:1240–1245CrossRefPubMedGoogle Scholar
  29. 29.
    Williams LJ, Henry MJ, Berk M, Dodd S, Jacka FN, Kotowicz MA et al (2008) Selective serotonin reuptake inhibitor use and bone mineral density in women with a history of depression. Int Clin Psychopharmacol 23:84–87CrossRefPubMedGoogle Scholar
  30. 30.
    Liu B, Anderson G, Mittmann N, To T, Axcell T, Shear N (1998) Use of selective serotonin-reuptake inhibitors or tricyclic antidepressants and risk of hip fractures in elderly people. Lancet 351:1303–1307CrossRefPubMedGoogle Scholar
  31. 31.
    Vestergaard P, Rejnmark L, Mosekilde L (2006) Anxiolytics, sedatives, antidepressants, neuroleptics and the risk of fracture. Osteoporos Int 17:807–816CrossRefPubMedGoogle Scholar
  32. 32.
    Karege F, Widmer J, Bovier P, Gaillard JM (1994) Platelet serotonin and plasma tryptophan in depressed patients: effect of drug treatment and clinical outcome. Neuropsychopharmacology 10:207–214CrossRefPubMedGoogle Scholar
  33. 33.
    Rothman RB, Zolkowska D, Baumann MH (2008) Serotonin (5-HT) transporter ligands affect plasma 5-HT in rats. Ann N Y Acad Sci 1139:268–284CrossRefPubMedGoogle Scholar
  34. 34.
    Zolkowska D, Baumann MH, Rothman RB (2008) Chronic fenfluramine administration increases plasma serotonin (5-hydroxytryptamine) to nontoxic levels. J Pharmacol Exp Ther 324:791–797CrossRefPubMedGoogle Scholar
  35. 35.
    Yadav VK, Balaji S, Suresh PS, Liu XS, Lu X, Li Z et al (2010) Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med 16:308–312CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kopp S, Alstergren P (2002) Blood serotonin and joint pain in seropositive versus seronegative rheumatoid arthritis. Mediators Inflamm 11:211–217CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Klavdianou K, Liossis SN, Papachristou DJ, Theocharis G, Sirinian C, Kottorou A et al (2016) Decreased serotonin levels and serotonin-mediated osteoblastic inhibitory signaling in patients with ankylosing spondylitis. J Bone Miner Res 31:630–639CrossRefPubMedGoogle Scholar
  38. 38.
    Reynolds T (2000) Declaration of Helsinki revised. J Natl Cancer Inst 92:1801–1803CrossRefPubMedGoogle Scholar
  39. 39.
    Prevoo ML, van ‘t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48CrossRefPubMedGoogle Scholar
  40. 40.
    Bernardes M, Vieira TS, Martins MJ, Lucas R, Costa L, Pereira JG et al (2017) Myocardial Perfusion in Rheumatoid Arthritis Patients: Associations with Traditional Risk Factors and Novel Biomarkers. Biomed Res Int 2017:6509754CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim HY, Park MH, Yoon HK, Han KO (2012) The changes in plasma serotonin levels after hormone therapy and their relationship with estrogen responsiveness on bone in postmenopausal women. J Clin Endocrinol Metab 97:1986–1994CrossRefPubMedGoogle Scholar
  42. 42.
    Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414CrossRefPubMedGoogle Scholar
  43. 43.
    Blundell JE (1984) Serotonin and appetite. Neuropharmacology 23:1537–1551CrossRefPubMedGoogle Scholar
  44. 44.
    Blundell JE (1986) Serotonin manipulations and the structure of feeding behaviour. Appetite 7(Suppl):39–56CrossRefPubMedGoogle Scholar
  45. 45.
    Curzon G (1990) Serotonin and appetite. Ann N Y Acad Sci 600:521–530 (discussion 30-1)CrossRefPubMedGoogle Scholar
  46. 46.
    Leibowitz SF, Weiss GF, Suh JS (1990) Medial hypothalamic nuclei mediate serotonin’s inhibitory effect on feeding behavior. Pharmacol Biochem Behav 37:735–742CrossRefPubMedGoogle Scholar
  47. 47.
    Simansky KJ (1996) Serotonergic control of the organization of feeding and satiety. Behav Brain Res 73:37–42CrossRefPubMedGoogle Scholar
  48. 48.
    McGuirk J, Silverstone T (1990) The effect of the 5-HT re-uptake inhibitor fluoxetine on food intake and body weight in healthy male subjects. Int J Obes 14:361–372PubMedGoogle Scholar
  49. 49.
    Pijl H, Koppeschaar HP, Willekens FL, Op de Kamp I, Veldhuis HD, Meinders AE (1991) Effect of serotonin re-uptake inhibition by fluoxetine on body weight and spontaneous food choice in obesity. Int J Obes 15:237–242PubMedGoogle Scholar
  50. 50.
    Lawton CL, Wales JK, Hill AJ, Blundell JE (1995) Serotoninergic manipulation, meal-induced satiety and eating pattern: effect of fluoxetine in obese female subjects. Obes Res 3:345–356CrossRefPubMedGoogle Scholar
  51. 51.
    Ward AS, Comer SD, Haney M, Fischman MW, Foltin RW (1999) Fluoxetine-maintained obese humans: effect on food intake and body weight. Physiol Behav 66:815–821CrossRefPubMedGoogle Scholar
  52. 52.
    MacKenzie RG, Hoebel BG, Ducret RP, Trulson ME (1979) Hyperphagia following intraventricular p-chlorophenylalanine-, leucine- or tryptophan-methyl esters: lack of correlation with whole brain serotonin levels. Pharmacol Biochem Behav 10:951–955CrossRefPubMedGoogle Scholar
  53. 53.
    Battaglino R, Fu J, Spate U, Ersoy U, Joe M, Sedaghat L et al (2004) Serotonin regulates osteoclast differentiation through its transporter. J Bone Miner Res 19:1420–1431CrossRefPubMedGoogle Scholar
  54. 54.
    Modder UI, Roforth MM, Hoey K, McCready LK, Peterson JM, Monroe DG et al (2011) Effects of estrogen on osteoprogenitor cells and cytokines/bone-regulatory factors in postmenopausal women. Bone 49:202–207CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Jonnakuty C, Gragnoli C (2008) What do we know about serotonin? J Cell Physiol 217:301–306CrossRefPubMedGoogle Scholar
  56. 56.
    Hirowatari Y, Hara K, Kamihata H, Iwasaka T, Takahashi H (2004) High-performance liquid chromatographic method with column-switching and post-column reaction for determination of serotonin levels in platelet-poor plasma. Clin Biochem 37:191–197CrossRefPubMedGoogle Scholar
  57. 57.
    Pussard E, Guigueno N, Adam O, Giudicelli JF (1996) Validation of HPLC-amperometric detection to measure serotonin in plasma, platelets, whole blood, and urine. Clin Chem 42:1086–1091PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of RheumatologySão João Hospital Center, Alameda Prof. Hernâni MonteiroPortoPortugal
  2. 2.Medicine Department, Faculty of MedicineUniversity of PortoPortoPortugal
  3. 3.Department of Nuclear MedicineSão João Hospital CenterPortoPortugal
  4. 4.EPIUnit-Institute of Public HealthUniversity of PortoPortoPortugal
  5. 5.Department of Clinical Epidemiology, Predictive Medicine and Public Health, Faculty of MedicineUniversity of PortoPortoPortugal
  6. 6.Faculty of MedicineUniversity of Porto (FMUP)PortoPortugal
  7. 7.Unit of Biochemistry, Department of Biomedicine, Faculty of MedicineUniversity of PortoPortoPortugal
  8. 8.Instituto de Investigação e Inovação em Saúde (i3s)University of PortoPortoPortugal

Personalised recommendations