Rheumatology International

, Volume 36, Issue 2, pp 169–182 | Cite as

Innate immune cells in the pathogenesis of primary systemic vasculitis

  • Durga Prasanna Misra
  • Vikas Agarwal
Review Article - Pathogenesis Reviews


Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis.


Pathogenesis Vasculitis Innate immunity Myeloid cells Monocytes Platelets 



ANCA-associated vasculitis


Adenosine deaminase


Anti-neutrophil cytoplasmic antibodies


Annexin V


Behcet’s disease


Birmingham Vasculitis Activity Score


Chemokine ligand


Chemokine receptor


Cluster of differentiation


CD 40 ligand


Cat eye syndrome chromosome region


Disease-associated molecular pattern


Dendritic cells


Deoxyribonucleic acid


Eosinophil cationic protein


Eosinophilic granulomatosis with polyangiitis


Extracellular signal-regulated kinase


Fc gamma receptor


Giant cell arteritis

γδ T cells

Gamma delta T cells


Granulomatosis with polyangiitis


Genome-wide associated studies


Human leukocyte antigen


High mobility group box


Henoch–Schonlein purpura








Intravenous immunoglobulin


Kawasaki’s disease


Lysosomal associated membrane protein




Mitogen-activated protein


Myeloid dendritic cell


Microscopic polyangiitis




Microribonucleic acid


Neutrophil extracellular traps


Non-obese diabetic

NK cell

Natural killer cell

NKT cell

Natural killer T cell


Plasmacytoid dendritic cell


Phosphatidyl inositol-3 kinase


Phorbol myristate acetate


Platelet-derived microparticles




Recombinase-associated gene


Receptor for advanced glycation end products


Severe combined immunodeficiency


Takayasu’s arteritis


T cell receptor


Helper T lymphocytes


Toll-like receptor


T regulatory cells



The authors would like to acknowledge Dr Armen Yuri Gasparyan for his valuable inputs into the search strategy and improvement of the manuscript.

Compliance with ethical standards

Conflicts of interest

The authors have no conflicts of interest to declare.


  1. 1.
    Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417. doi: 10.1007/s00296-011-1999-3 PubMedCrossRefGoogle Scholar
  2. 2.
    Lyons PA, Rayner TF, Trivedi S et al (2012) Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med 367:214–223. doi: 10.1056/NEJMoa1108735 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Morris H, Morgan MD, Wood AM et al (2011) ANCA-associated vasculitis is linked to carriage of the Z allele of alpha(1) antitrypsin and its polymers. Ann Rheum Dis 70:1851–1856. doi: 10.1136/ard.2011.153569 PubMedCrossRefGoogle Scholar
  4. 4.
    Xiao H, Heeringa P, Hu P et al (2002) Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 110:955–963. doi: 10.1172/jci15918 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Jennette JC, Falk RJ, Hu P, Xiao H (2013) Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Annu Rev Pathol 8:139–160. doi: 10.1146/annurev-pathol-011811-132453 PubMedCrossRefGoogle Scholar
  6. 6.
    Schreiber A, Xiao H, Falk RJ, Jennette JC (2006) Bone marrow-derived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies. J Am Soc Nephrol 17:3355–3364. doi: 10.1681/asn.2006070718 PubMedCrossRefGoogle Scholar
  7. 7.
    Primo VC, Marusic S, Franklin CC et al (2010) Anti-PR3 immune responses induce segmental and necrotizing glomerulonephritis. Clin Exp Immunol 159:327–337. doi: 10.1111/j.1365-2249.2009.04072.x PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Little MA, Al-Ani B, Ren S et al (2012) Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system. PLoS One 7:e28626. doi: 10.1371/journal.pone.0028626 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Hattar K, Oppermann S, Ankele C et al (2010) c-ANCA-induced neutrophil-mediated lung injury: a model of acute Wegener’s granulomatosis. Eur Respir J 36:187–195. doi: 10.1183/09031936.00143308 PubMedCrossRefGoogle Scholar
  10. 10.
    Xiao H, Heeringa P, Liu Z et al (2005) The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies. Am J Pathol 167:39–45. doi: 10.1016/s0002-9440(10)62951-3 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Schreiber A, Xiao H, Jennette JC et al (2009) C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol 20:289–298. doi: 10.1681/asn.2008050497 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Wang C, Wang H, Chang DY et al (2015) High mobility group box 1 contributes to anti-neutrophil cytoplasmic antibody-induced neutrophils activation through receptor for advanced glycation end products (RAGE) and Toll-like receptor 4. Arthritis Res Ther 17:64. doi: 10.1186/s13075-015-0587-4 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hao J, Meng LQ, Xu PC, Chen M, Zhao MH (2012) p38MAPK, ERK and PI3K signaling pathways are involved in C5a-primed neutrophils for ANCA-mediated activation. PLoS One 7:e38317. doi: 10.1371/journal.pone.0038317 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Yoshida M, Sasaki M, Sugisaki K, Yamaguchi Y, Yamada M (2013) Neutrophil extracellular trap components in fibrinoid necrosis of the kidney with myeloperoxidase-ANCA-associated vasculitis. Clin Kidney J 6:308–312. doi: 10.1093/ckj/sft048 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kessenbrock K, Krumbholz M, Schonermarck U et al (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15:623–625. doi: 10.1038/nm.1959 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Nakazawa D, Shida H, Tomaru U et al (2014) Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J Am Soc Nephrol 25:990–997. doi: 10.1681/asn.2013060606 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wang H, Wang C, Zhao MH, Chen M (2015) Neutrophil extracellular traps can activate alternative complement pathways. Clin Exp Immunol 181:518–527. doi: 10.1111/cei.12654 PubMedCrossRefGoogle Scholar
  18. 18.
    Kain R, Exner M, Brandes R et al (2008) Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med 14:1088–1096. doi: 10.1038/nm.1874 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Tang S, Zhang Y, Yin SW et al (2015) Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis. Clin Exp Immunol 180:408–418. doi: 10.1111/cei.12589 PubMedCrossRefGoogle Scholar
  20. 20.
    Suzuki K, Nagao T, Itabashi M et al (2014) A novel autoantibody against moesin in the serum of patients with MPO-ANCA-associated vasculitis. Nephrol Dial Transplant 29:1168–1177. doi: 10.1093/ndt/gft469 PubMedCrossRefGoogle Scholar
  21. 21.
    Halbwachs L, Lesavre P (2012) Endothelium-neutrophil interactions in ANCA-associated diseases. J Am Soc Nephrol 23:1449–1461. doi: 10.1681/asn.2012020119 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hong Y, Eleftheriou D, Hussain AA et al (2012) Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles. J Am Soc Nephrol 23:49–62. doi: 10.1681/asn.2011030298 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Kambas K, Chrysanthopoulou A, Vassilopoulos D et al (2014) Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis 73:1854–1863. doi: 10.1136/annrheumdis-2013-203430 PubMedCrossRefGoogle Scholar
  24. 24.
    Huang YM, Wang H, Wang C, Chen M, Zhao MH (2015) C5a inducing tissue factor expressing microparticles and neutrophil extracellular traps promote hypercoagulability in ANCA-associated vasculitis. Arthritis Rheumatol. doi: 10.1002/art.39239 PubMedCentralGoogle Scholar
  25. 25.
    Cattaneo R, Fenini MG, Facchetti F (1986) The cryoglobulinemic vasculitis. Ric Clin Lab 16:327–333PubMedGoogle Scholar
  26. 26.
    Moser R, Etter H, Oligati L, Fehr J (1995) Neutrophil activation in response to immune complex-bearing endothelial cells depends on the functional cooperation of Fc gamma RII (CD32) and Fc gamma RIII (CD16). J Lab Clin Med 126:588–596PubMedGoogle Scholar
  27. 27.
    Zheng W, Warner R, Ruggeri R et al (2015) PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis. J Pharmacol Exp Ther 353:288–298. doi: 10.1124/jpet.114.221788 PubMedCrossRefGoogle Scholar
  28. 28.
    Takahashi K, Oharaseki T, Naoe S, Wakayama M, Yokouchi Y (2005) Neutrophilic involvement in the damage to coronary arteries in acute stage of Kawasaki disease. Pediatr Int 47:305–310. doi: 10.1111/j.1442-200x.2005.02049.x PubMedCrossRefGoogle Scholar
  29. 29.
    Navon Elkan P, Pierce SB, Segel R et al (2014) Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 370:921–931. doi: 10.1056/NEJMoa1307362 PubMedCrossRefGoogle Scholar
  30. 30.
    Belot A, Wassmer E, Twilt M et al (2014) Mutations in CECR1 associated with a neutrophil signature in peripheral blood. Pediatr Rheumatol Online J 12:44. doi: 10.1186/1546-0096-12-44 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Kobayashi T, Kimura H, Okada Y et al (2007) Increased CD11b expression on polymorphonuclear leucocytes and cytokine profiles in patients with Kawasaki disease. Clin Exp Immunol 148:112–118. doi: 10.1111/j.1365-2249.2007.03326.x PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Heidari B, Amin R, Kashef S et al (2014) Expression of CD11b as an adhesion molecule on neutrophils in children with Kawasaki disease. Iran J Allergy Asthma Immunol 13:265–270PubMedGoogle Scholar
  33. 33.
    Seko Y, Minota S, Kawasaki A et al (1994) Perforin-secreting killer cell infiltration and expression of a 65-kD heat-shock protein in aortic tissue of patients with Takayasu’s arteritis. J Clin Invest 93:750–758. doi: 10.1172/jci117029 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Saadoun D, Garrido M, Comarmond C et al (2015) Th1 and th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol 67:1353–1360. doi: 10.1002/art.39037 PubMedCrossRefGoogle Scholar
  35. 35.
    Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM (2010) Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121:906–915. doi: 10.1161/circulationaha.109.872903 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Nadkarni S, Dalli J, Hollywood J et al (2014) Investigational analysis reveals a potential role for neutrophils in giant-cell arteritis disease progression. Circ Res 114:242–248. doi: 10.1161/circresaha.114.301374 PubMedCrossRefGoogle Scholar
  37. 37.
    Kobayashi M, Ito M, Nakagawa A et al (2000) Neutrophil and endothelial cell activation in the vasa vasorum in vasculo-Behcet disease. Histopathology 36:362–371PubMedCrossRefGoogle Scholar
  38. 38.
    Ozluk E, Balta I, Akoguz O et al (2014) Histopathologic study of pathergy test in Behcet’s disease. Indian J Dermatol 59:630. doi: 10.4103/0019-5154.143568 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Neves FS, Carrasco S, Goldenstein-Schainberg C, Goncalves CR, de Mello SB (2009) Neutrophil hyperchemotaxis in Behcet’s disease: a possible role for monocytes orchestrating bacterial-induced innate immune responses. Clin Rheumatol 28:1403–1410. doi: 10.1007/s10067-009-1261-5 PubMedCrossRefGoogle Scholar
  40. 40.
    Na SY, Park MJ, Park S, Lee ES (2013) Up-regulation of Th17 and related cytokines in Behcet’s disease corresponding to disease activity. Clin Exp Rheumatol 31:32–40PubMedGoogle Scholar
  41. 41.
    Churg J, Strauss L (1951) Allergic granulomatosis, allergic angiitis, and periarteritis nodosa. Am J Pathol 27:277–301PubMedCentralPubMedGoogle Scholar
  42. 42.
    Jakiela B, Szczeklik W, Plutecka H et al (2012) Increased production of IL-5 and dominant Th2-type response in airways of Churg–Strauss syndrome patients. Rheumatology (Oxford) 51:1887–1893. doi: 10.1093/rheumatology/kes171 CrossRefGoogle Scholar
  43. 43.
    Terrier B, Bieche I, Maisonobe T et al (2010) Interleukin-25: a cytokine linking eosinophils and adaptive immunity in Churg–Strauss syndrome. Blood 116:4523–4531. doi: 10.1182/blood-2010-02-267542 PubMedCrossRefGoogle Scholar
  44. 44.
    Manger BJ, Krapf FE, Gramatzki M et al (1985) IgE-containing circulating immune complexes in Churg–Strauss vasculitis. Scand J Immunol 21:369–373PubMedCrossRefGoogle Scholar
  45. 45.
    Pepper RJ, Fabre MA, Pavesio C et al (2008) Rituximab is effective in the treatment of refractory Churg–Strauss syndrome and is associated with diminished T-cell interleukin-5 production. Rheumatology (Oxford) 47:1104–1105. doi: 10.1093/rheumatology/ken175 CrossRefGoogle Scholar
  46. 46.
    Meziane H, Maakel ML, Vachier I, Bousquet J, Chanez P (2001) Sputum eosinophilia in Churg–Strauss syndrome. Respir Med 95:799–801. doi: 10.1053/rmed.2001.1163 PubMedCrossRefGoogle Scholar
  47. 47.
    Guilpain P, Auclair JF, Tamby MC et al (2007) Serum eosinophil cationic protein: a marker of disease activity in Churg–Strauss syndrome. Ann N Y Acad Sci 1107:392–399. doi: 10.1196/annals.1381.041 PubMedCrossRefGoogle Scholar
  48. 48.
    Zwerina J, Bach C, Martorana D et al (2011) Eotaxin-3 in Churg–Strauss syndrome: a clinical and immunogenetic study. Rheumatology (Oxford) 50:1823–1827. doi: 10.1093/rheumatology/keq445 CrossRefGoogle Scholar
  49. 49.
    Terai M, Yasukawa K, Honda T et al (2002) Peripheral blood eosinophilia and eosinophil accumulation in coronary microvessels in acute Kawasaki disease. Pediatr Infect Dis J 21:777–781. doi: 10.1097/ PubMedCrossRefGoogle Scholar
  50. 50.
    Kuo HC, Yang KD, Liang CD et al (2007) The relationship of eosinophilia to intravenous immunoglobulin treatment failure in Kawasaki disease. Pediatr Allergy Immunol 18:354–359. doi: 10.1111/j.1399-3038.2007.00516.x PubMedCrossRefGoogle Scholar
  51. 51.
    D’Alessandro A, Righetti PG, Zolla L (2010) The red blood cell proteome and interactome: an update. J Proteome Res 9:144–163. doi: 10.1021/pr900831f PubMedCrossRefGoogle Scholar
  52. 52.
    Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A (2010) The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol 26:140–145PubMedCrossRefGoogle Scholar
  53. 53.
    Buzas EI, Gyorgy B, Nagy G, Falus A, Gay S (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10:356–364. doi: 10.1038/nrrheum.2014.19 PubMedCrossRefGoogle Scholar
  54. 54.
    Isik T, Kurt M, Ayhan E et al (2012) Relation of red cell distribution width with presence and severity of coronary artery ectasia. Clin Appl Thromb Hemost 18:441–447. doi: 10.1177/1076029612447678 PubMedCrossRefGoogle Scholar
  55. 55.
    Gungor B, Ozcan KS, Karadeniz FO et al (2014) Red cell distribution width is increased in patients with ascending aortic dilatation. Turk Kardiyol Dern Ars 42:227–235. doi: 10.5543/tkda.2014.77508 PubMedCrossRefGoogle Scholar
  56. 56.
    Rondina MT, Weyrich AS, Zimmerman GA (2013) Platelets as cellular effectors of inflammation in vascular diseases. Circ Res 112:1506–1519. doi: 10.1161/circresaha.113.300512 PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Willeke P, Kumpers P, Schluter B et al (2015) Platelet counts as a biomarker in ANCA-associated vasculitis. Scand J Rheumatol 44:302–308. doi: 10.3109/03009742.2015.1006247 PubMedCrossRefGoogle Scholar
  58. 58.
    Tomasson G, Lavalley M, Tanriverdi K et al (2011) Relationship between markers of platelet activation and inflammation with disease activity in Wegener’s granulomatosis. J Rheumatol 38:1048–1054. doi: 10.3899/jrheum.100735 PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Kraemer BF, Campbell RA, Schwertz H et al (2011) Novel anti-bacterial activities of beta-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 7:e1002355. doi: 10.1371/journal.ppat.1002355 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Stegeman CA, Tervaert JW, de Jong PE, Kallenberg CG (1996) Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener’s granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N Engl J Med 335:16–20. doi: 10.1056/nejm199607043350103 PubMedCrossRefGoogle Scholar
  61. 61.
    Brogan PA, Shah V, Brachet C et al (2004) Endothelial and platelet microparticles in vasculitis of the young. Arthritis Rheum 50:927–936. doi: 10.1002/art.20199 PubMedCrossRefGoogle Scholar
  62. 62.
    Daniel L, Fakhouri F, Joly D et al (2006) Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis. Kidney Int 69:1416–1423. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  63. 63.
    Meijer-Jorna LB, Mekkes JR, van der Wal AC (2002) Platelet involvement in cutaneous small vessel vasculitis. J Cutan Pathol 29:176–180PubMedCrossRefGoogle Scholar
  64. 64.
    Yamamoto T, Chikugo T, Tanaka Y (2002) Elevated plasma levels of beta-thromboglobulin and platelet factor 4 in patients with rheumatic disorders and cutaneous vasculitis. Clin Rheumatol 21:501–504. doi: 10.1007/s100670200123 PubMedCrossRefGoogle Scholar
  65. 65.
    Culic S, Jakl R, Metlicic V et al (2001) Platelet function analysis in children with Schonlein–Henoch syndrome. Arch Med Res 32:268–272PubMedCrossRefGoogle Scholar
  66. 66.
    Levin M, Holland PC, Nokes TJ et al (1985) Platelet immune complex interaction in pathogenesis of Kawasaki disease and childhood polyarteritis. Br Med J (Clin Res Ed) 290:1456–1460CrossRefGoogle Scholar
  67. 67.
    Wang CL, Wu YT, Liu CA et al (2003) Expression of CD40 ligand on CD4+ T-cells and platelets correlated to the coronary artery lesion and disease progress in Kawasaki disease. Pediatrics 111:E140–E147PubMedCrossRefGoogle Scholar
  68. 68.
    Gonzalez-Alegre P, Ruiz-Lopez AD, Abarca-Costalago M, Gonzalez-Santos P (2001) Increment of the platelet count in temporal arteritis: response to therapy and ischemic complications. Eur Neurol 45:43–45PubMedCrossRefGoogle Scholar
  69. 69.
    Balta I, Balta S, Koryurek OM et al (2014) Mean platelet volume is associated with aortic arterial stiffness in patients with Behcet’s disease without significant cardiovascular involvement. J Eur Acad Dermatol Venereol 28:1388–1393. doi: 10.1111/jdv.12297 PubMedCrossRefGoogle Scholar
  70. 70.
    Tang Z, Wu Y, Hu W et al (2001) The distribution and significance of renal infiltrating cells in patients with diffuse crescentic glomerulonephritis. Chin Med J (Engl) 114:1267–1269Google Scholar
  71. 71.
    Rastaldi MP, Ferrario F, Crippa A et al (2000) Glomerular monocyte-macrophage features in ANCA-positive renal vasculitis and cryoglobulinemic nephritis. J Am Soc Nephrol 11:2036–2043PubMedGoogle Scholar
  72. 72.
    Wikman A, Lundahl J, Jacobson SH (2008) Sustained monocyte activation in clinical remission of systemic vasculitis. Inflammation 31:384–390. doi: 10.1007/s10753-008-9089-8 PubMedCrossRefGoogle Scholar
  73. 73.
    Tadema H, Abdulahad WH, Stegeman CA, Kallenberg CG, Heeringa P (2011) Increased expression of Toll-like receptors by monocytes and natural killer cells in ANCA-associated vasculitis. PLoS One 6:e24315. doi: 10.1371/journal.pone.0024315 PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Ralston DR, Marsh CB, Lowe MP, Wewers MD (1997) Antineutrophil cytoplasmic antibodies induce monocyte IL-8 release. Role of surface proteinase-3, alpha1-antitrypsin, and Fcgamma receptors. J Clin Invest 100:1416–1424. doi: 10.1172/jci119662 PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Ohlsson S, Hellmark T, Pieters K et al (2005) Increased monocyte transcription of the proteinase 3 gene in small vessel vasculitis. Clin Exp Immunol 141:174–182. doi: 10.1111/j.1365-2249.2005.02819.x PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Nowack R, Schwalbe K, Flores-Suarez LF, Yard B, van der Woude FJ (2000) Upregulation of CD14 and CD18 on monocytes in vitro by antineutrophil cytoplasmic autoantibodies. J Am Soc Nephrol 11:1639–1646PubMedGoogle Scholar
  77. 77.
    Casselman BL, Kilgore KS, Miller BF, Warren JS (1995) Antibodies to neutrophil cytoplasmic antigens induce monocyte chemoattractant protein-1 secretion from human monocytes. J Lab Clin Med 126:495–502PubMedGoogle Scholar
  78. 78.
    Taekema-Roelvink ME, Kooten C, Kooij SV, Heemskerk E, Daha MR (2001) Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J Am Soc Nephrol 12:932–940PubMedGoogle Scholar
  79. 79.
    Weidner S, Neupert W, Goppelt-Struebe M, Rupprecht HD (2001) Antineutrophil cytoplasmic antibodies induce human monocytes to produce oxygen radicals in vitro. Arthritis Rheum 44:1698–1706PubMedCrossRefGoogle Scholar
  80. 80.
    Takahashi K, Oharaseki T, Yokouchi Y, Naoe S, Saji T (2013) Kawasaki disease: basic and pathological findings. Clin Exp Nephrol 17:690–693. doi: 10.1007/s10157-012-0734-z PubMedCrossRefGoogle Scholar
  81. 81.
    Lin IC, Kuo HC, Lin YJ et al (2012) Augmented TLR2 expression on monocytes in both human Kawasaki disease and a mouse model of coronary arteritis. PLoS One 7:e38635. doi: 10.1371/journal.pone.0038635 PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Katayama K, Matsubara T, Fujiwara M, Koga M, Furukawa S (2000) CD14+ CD16+ monocyte subpopulation in Kawasaki disease. Clin Exp Immunol 121:566–570PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Ichiyama T, Ueno Y, Hasegawa M et al (2005) Intravenous immunoglobulin does not increase FcgammaRIIB expression on monocytes/macrophages during acute Kawasaki disease. Rheumatology (Oxford) 44:314–317. doi: 10.1093/rheumatology/keh488 CrossRefGoogle Scholar
  84. 84.
    Ichiyama T, Yoshitomi T, Nishikawa M et al (2001) NF-kappaB activation in peripheral blood monocytes/macrophages and T cells during acute Kawasaki disease. Clin Immunol 99:373–377. doi: 10.1006/clim.2001.5026 PubMedCrossRefGoogle Scholar
  85. 85.
    Han JW, Shimada K, Ma-Krupa W et al (2008) Vessel wall-embedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation. Circ Res 102:546–553. doi: 10.1161/circresaha.107.161653 PubMedCrossRefGoogle Scholar
  86. 86.
    Wagner AD, Goronzy JJ, Weyand CM (1994) Functional profile of tissue-infiltrating and circulating CD68+ cells in giant cell arteritis. Evidence for two components of the disease. J Clin Invest 94:1134–1140. doi: 10.1172/jci117428 PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Saruhan-Direskeneli G, Bicakcigil M, Yilmaz V et al (2006) Interleukin (IL)-12, IL-2, and IL-6 gene polymorphisms in Takayasu’s arteritis from Turkey. Hum Immunol 67:735–740. doi: 10.1016/j.humimm.2006.06.003 PubMedCrossRefGoogle Scholar
  88. 88.
    Loricera J, Blanco R, Castaneda S et al (2014) Tocilizumab in refractory aortitis: study on 16 patients and literature review. Clin Exp Rheumatol 32:S79–S89PubMedGoogle Scholar
  89. 89.
    Kim SK, Jang WC, Ahn YC et al (2012) Promoter-2518 single nucleotide polymorphism of monocyte chemoattractant protein-1 is associated with clinical severity in Behcet’s disease. Inflamm Res 61:541–545. doi: 10.1007/s00011-012-0471-5 PubMedCrossRefGoogle Scholar
  90. 90.
    Bozoglu E, Dinc A, Erdem H et al (2005) Vascular endothelial growth factor and monocyte chemoattractant protein-1 in Behcet’s patients with venous thrombosis. Clin Exp Rheumatol 23:S42–S48PubMedGoogle Scholar
  91. 91.
    Sahin S, Lawrence R, Direskeneli H et al (1996) Monocyte activity in Behcet’s disease. Br J Rheumatol 35:424–429PubMedCrossRefGoogle Scholar
  92. 92.
    Mege JL, Dilsen N, Sanguedolce V et al (1993) Overproduction of monocyte derived tumor necrosis factor alpha, interleukin (IL) 6, IL-8 and increased neutrophil superoxide generation in Behcet’s disease. A comparative study with familial Mediterranean fever and healthy subjects. J Rheumatol 20:1544–1549PubMedGoogle Scholar
  93. 93.
    Castrichini M, Lazzerini PE, Gamberucci A et al (2014) The purinergic P2x7 receptor is expressed on monocytes in Behcet’s disease and is modulated by TNF-alpha. Eur J Immunol 44:227–238. doi: 10.1002/eji.201343353 PubMedCrossRefGoogle Scholar
  94. 94.
    Segerer S, Heller F, Lindenmeyer MT et al (2008) Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int 74:37–46. doi: 10.1038/ki.2008.99 PubMedCrossRefGoogle Scholar
  95. 95.
    Csernok E, Ai M, Gross WL et al (2006) Wegener autoantigen induces maturation of dendritic cells and licenses them for Th1 priming via the protease-activated receptor-2 pathway. Blood 107:4440–4448. doi: 10.1182/blood-2005-05-1875 PubMedCrossRefGoogle Scholar
  96. 96.
    Sangaletti S, Tripodo C, Chiodoni C et al (2012) Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120:3007–3018. doi: 10.1182/blood-2012-03-416156 PubMedCrossRefGoogle Scholar
  97. 97.
    Clayton AR, Prue RL, Harper L, Drayson MT, Savage CO (2003) Dendritic cell uptake of human apoptotic and necrotic neutrophils inhibits CD40, CD80, and CD86 expression and reduces allogeneic T cell responses: relevance to systemic vasculitis. Arthritis Rheum 48:2362–2374. doi: 10.1002/art.11130 PubMedCrossRefGoogle Scholar
  98. 98.
    Rimbert M, Hamidou M, Braudeau C et al (2011) Decreased numbers of blood dendritic cells and defective function of regulatory T cells in antineutrophil cytoplasmic antibody-associated vasculitis. PLoS One 6:e18734. doi: 10.1371/journal.pone.0018734 PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Schoppet M, Pankuweit S, Maisch B (2003) CD83+ dendritic cells in inflammatory infiltrates of Churg–Strauss myocarditis. Arch Pathol Lab Med 127:98–101. doi: 10.1043/0003-9985(2003)127<98:cdciii>;2 PubMedGoogle Scholar
  100. 100.
    Wagner AD, Wittkop U, Prahst A et al (2003) Dendritic cells co-localize with activated CD4+ T cells in giant cell arteritis. Clin Exp Rheumatol 21:185–192PubMedGoogle Scholar
  101. 101.
    Krupa WM, Dewan M, Jeon MS et al (2002) Trapping of misdirected dendritic cells in the granulomatous lesions of giant cell arteritis. Am J Pathol 161:1815–1823. doi: 10.1016/s0002-9440(10)64458-6 PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Ma-Krupa W, Jeon MS, Spoerl S et al (2004) Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J Exp Med 199:173–183. doi: 10.1084/jem.20030850 PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Weyand CM, Ma-Krupa W, Pryshchep O et al (2005) Vascular dendritic cells in giant cell arteritis. Ann N Y Acad Sci 1062:195–208. doi: 10.1196/annals.1358.023 PubMedCrossRefGoogle Scholar
  104. 104.
    Melikoglu M, Uysal S, Krueger JG et al (2006) Characterization of the divergent wound-healing responses occurring in the pathergy reaction and normal healthy volunteers. J Immunol 177:6415–6421PubMedCrossRefGoogle Scholar
  105. 105.
    Ye Z, Wang C, Kijlstra A, Zhou X, Yang P (2014) A possible role for interleukin 37 in the pathogenesis of Behcet’s disease. Curr Mol Med 14:535–542PubMedCrossRefGoogle Scholar
  106. 106.
    Yilmaz S, Cinar M, Pekel A et al (2013) The expression of transmembrane and soluble CXCL16 and the relation with interferon-alpha secretion in patients with Behcet’s disease. Clin Exp Rheumatol 31:84–87PubMedGoogle Scholar
  107. 107.
    Holmen C, Elsheikh E, Christensson M et al (2007) Anti endothelial cell autoantibodies selectively activate SAPK/JNK signalling in Wegener’s granulomatosis. J Am Soc Nephrol 18:2497–2508. doi: 10.1681/asn.2006111286 PubMedCrossRefGoogle Scholar
  108. 108.
    Khalili-Shirazi A, Gregson NA, Londei M, Summers L, Hughes RA (1998) The distribution of CD1 molecules in inflammatory neuropathy. J Neurol Sci 158:154–163PubMedCrossRefGoogle Scholar
  109. 109.
    Chauhan SK, Tripathy NK, Sinha N, Nityanand S (2006) T-cell receptor repertoire of circulating gamma delta T-cells in Takayasu’s arteritis. Clin Immunol 118:243–249. doi: 10.1016/j.clim.2005.10.010 PubMedCrossRefGoogle Scholar
  110. 110.
    Chauhan SK, Singh M, Nityanand S (2007) Reactivity of gamma/delta T cells to human 60-kd heat-shock protein and their cytotoxicity to aortic endothelial cells in Takayasu arteritis. Arthritis Rheum 56:2798–2802. doi: 10.1002/art.22801 PubMedCrossRefGoogle Scholar
  111. 111.
    Suzuki Y, Hoshi K, Matsuda T, Mizushima Y (1992) Increased peripheral blood gamma delta+ T cells and natural killer cells in Behcet’s disease. J Rheumatol 19:588–592PubMedGoogle Scholar
  112. 112.
    Freysdottir J, Lau S, Fortune F (1999) Gammadelta T cells in Behcet’s disease (BD) and recurrent aphthous stomatitis (RAS). Clin Exp Immunol 118:451–457PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Treusch M, Vonthein R, Baur M et al (2004) Influence of human recombinant interferon-alpha2a (rhIFN-alpha2a) on altered lymphocyte subpopulations and monocytes in Behcet’s disease. Rheumatology (Oxford) 43:1275–1282. doi: 10.1093/rheumatology/keh311 CrossRefGoogle Scholar
  114. 114.
    Bank I, Duvdevani M, Livneh A (2003) Expansion of gammadelta T-cells in Behcet’s disease: role of disease activity and microbial flora in oral ulcers. J Lab Clin Med 141:33–40. doi: 10.1067/mlc.2003.1 PubMedCrossRefGoogle Scholar
  115. 115.
    Freysdottir J, Hussain L, Farmer I, Lau SH, Fortune F (2006) Diversity of gammadelta T cells in patients with Behcet’s disease is indicative of polyclonal activation. Oral Dis 12:271–277. doi: 10.1111/j.1601-0825.2005.01185.x PubMedCrossRefGoogle Scholar
  116. 116.
    Accardo-Palumbo A, Ferrante A, Cadelo M et al (2004) The level of soluble granzyme A is elevated in the plasma and in the Vgamma9/Vdelta2 T cell culture supernatants of patients with active Behcet’s disease. Clin Exp Rheumatol 22:S45–S49PubMedGoogle Scholar
  117. 117.
    Puxeddu I, Bongiorni F, Chimenti D et al (2012) Cell surface expression of activating receptors and co-receptors on peripheral blood NK cells in systemic autoimmune diseases. Scand J Rheumatol 41:298–304. doi: 10.3109/03009742.2011.648657 PubMedCrossRefGoogle Scholar
  118. 118.
    Tognarelli S, Gayet J, Lambert M et al (2014) Tissue-specific microvascular endothelial cells show distinct capacity to activate NK cells: implications for the pathophysiology of granulomatosis with polyangiitis. J Immunol 192:3399–3408. doi: 10.4049/jimmunol.1301508 PubMedCrossRefGoogle Scholar
  119. 119.
    Park KS, Park JS, Nam JH et al (2007) HLA-E*0101 and HLA-G*010101 reduce the risk of Behcet’s disease. Tissue Antigens 69:139–144. doi: 10.1111/j.1399-0039.2006.00742.x PubMedCrossRefGoogle Scholar
  120. 120.
    Hamzaoui K, Berraies A, Kaabachi W, Ammar J, Hamzaoui A (2013) Pulmonary manifestations in Behcet disease: impaired natural killer cells activity. Multidiscip Respir Med 8:29. doi: 10.1186/2049-6958-8-29 PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Onder M, Bozkurt M, Gurer MA et al (1994) Natural cellular cytotoxicity in Behcet’s disease. J Dermatol 21:239–243PubMedCrossRefGoogle Scholar
  122. 122.
    Yamaguchi Y, Takahashi H, Satoh T et al (2010) Natural killer cells control a T-helper 1 response in patients with Behcet’s disease. Arthritis Res Ther 12:R80. doi: 10.1186/ar3005 PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Hamzaoui K, Kamoun M, Houman H et al (2006) Discrepancies of NKT cells expression in peripheral blood and in cerebrospinal fluid from Behcet’s disease. J Neuroimmunol 175:160–168. doi: 10.1016/j.jneuroim.2006.02.011 PubMedCrossRefGoogle Scholar
  124. 124.
    Yu HG, Lee DS, Seo JM et al (2004) The number of CD8+ T cells and NKT cells increases in the aqueous humor of patients with Behcet’s uveitis. Clin Exp Immunol 137:437–443. doi: 10.1111/j.1365-2249.2004.02536.x PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Clinical ImmunologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia

Personalised recommendations