Skip to main content

Advertisement

Log in

Epigenetics of osteoarticular diseases: recent developments

  • Review Article - Review on Pathogenesis
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

A variety of osteoarticular conditions possess an underlying genetic aetiology. Large-scale genome-wide association studies have identified several genetic loci associated with osteoarticular conditions, but were unable to fully account for their estimated heritability. Epigenetic modifications including DNA methylation, histone modification, nucleosome positioning, and microRNA expression may help account for this incomplete heritability. This articles reviews insights from epigenetic studies in osteoarticular diseases, focusing on osteoarthritis, but also examines recent advances in rheumatoid arthritis, osteoporosis, systemic lupus erythematosus (SLE), ankylosing spondylitis, and sarcoma. Genome-wide methylation studies are permitting identification of novel candidate genes and molecular pathways, and the pathogenic mechanisms with altered methylation status are beginning to be elucidated. These findings are gradually translating into improved understanding of disease pathogenesis and clinical applications. Functional studies in osteoarthritis, rheumatoid arthritis, and SLE are now identifying downstream molecular alterations that may confer disease susceptibility. Epigenetic markers are being validated as prognostic and therapeutic disease biomarkers in sarcoma, and clinical trials of hypomethylating agents as treatments for sarcoma are being conducted. In concert with advances in throughput and cost-efficiency of available technologies, future epigenetic research will enable greater characterisation and treatment for both common and rare osteoarticular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  2. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86,2105-13-86

  3. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E et al (2008) Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA 105:1949–1954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

    CAS  PubMed  Google Scholar 

  6. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA et al (2014) Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 5:3746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bijlsma JW, Berenbaum F, Lafeber FP (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377:2115–2126

    Article  PubMed  Google Scholar 

  9. arcOGEN Consortium, arcOGEN Collaborators, Zeggini E, Panoutsopoulou K, Southam L, Rayner NW, et al (2012) Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380:815–823

  10. Sesselmann S, Soder S, Voigt R, Haag J, Grogan SP, Aigner T (2009) DNA methylation is not responsible for p21WAF1/CIP1 down-regulation in osteoarthritic chondrocytes. Osteoarthr Cartil 17:507–512

    Article  CAS  PubMed  Google Scholar 

  11. Delgado-Calle J, Fernandez AF, Sainz J, Zarrabeitia MT, Sanudo C, Garcia-Renedo R et al (2013) Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum 65:197–205

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez-Tajes J, Soto-Hermida A, Vazquez-Mosquera ME, Cortes-Pereira E, Mosquera A, Fernandez-Moreno M et al (2014) Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis 73:668–677

    Article  CAS  PubMed  Google Scholar 

  13. Rushton MD, Reynard LN, Barter MJ, Refaie R, Rankin KS, Young DA, et al (2014) Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol 66:2450–2460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. den Hollander W, Ramos YF, Bos SD, Bomer N, van der Breggen R, Lakenberg N et al (2014) Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches. Ann Rheum Dis 73:2208–2212

    Article  Google Scholar 

  15. Fernandez MP, Young MF, Sobel ME (1985) Methylation of type II and type I collagen genes in differentiated and dedifferentiated chondrocytes. J Biol Chem 260:2374–2378

    CAS  PubMed  Google Scholar 

  16. Hashimoto K, Otero M, Imagawa K, de Andres MC, Coico JM, Roach HI et al (2013) Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem 288:10061–10072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. de Andres MC, Imagawa K, Hashimoto K, Gonzalez A, Roach HI, Goldring MB et al (2013) Loss of methylation in CpG sites in the NF-kappaB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. Arthritis Rheum 65:732–742

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kim KI, Park YS, Im GI (2013) Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J Bone Miner Res 28:1050–1060

    Article  CAS  PubMed  Google Scholar 

  19. Iliopoulos D, Malizos KN, Tsezou A (2007) Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis 66:1616–1621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chapman K, Takahashi A, Meulenbelt I, Watson C, Rodriguez-Lopez J, Egli R et al (2008) A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5′ UTR of GDF5 with osteoarthritis susceptibility. Hum Mol Genet 17:1497–1504

    Article  CAS  PubMed  Google Scholar 

  21. Reynard LN, Bui C, Canty-Laird EG, Young DA, Loughlin J (2011) Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum Mol Genet 20:3450–3460

    Article  CAS  PubMed  Google Scholar 

  22. Reynard LN, Bui C, Syddall CM, Loughlin J (2014) CpG methylation regulates allelic expression of GDF5 by modulating binding of SP1 and SP3 repressor proteins to the osteoarthritis susceptibility SNP rs143383. Hum Genet 133:1059–1073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bomer N, den Hollander W, Ramos YF, Bos SD, van der Breggen R, Lakenberg N, et al (2014)Underlying molecular mechanisms of DIO2 susceptibility in symptomatic osteoarthritis. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-204739 [Epub ahead of print]

    Google Scholar 

  24. Zimmermann P, Boeuf S, Dickhut A, Boehmer S, Olek S, Richter W (2008) Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum 58:2743–2753

    Article  PubMed  Google Scholar 

  25. Poschl E, Fidler A, Schmidt B, Kallipolitou A, Schmid E, Aigner T (2005) DNA methylation is not likely to be responsible for aggrecan down regulation in aged or osteoarthritic cartilage. Ann Rheum Dis 64:477–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Roach HI, Yamada N, Cheung KS, Tilley S, Clarke NM, Oreffo RO et al (2005) Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum 52:3110–3124

    Article  CAS  PubMed  Google Scholar 

  27. Hashimoto K, Oreffo RO, Gibson MB, Goldring MB, Roach HI (2009) DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum 60:3303–3313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. de Andres MC, Imagawa K, Hashimoto K, Gonzalez A, Goldring MB, Roach HI et al (2011) Suppressors of cytokine signalling (SOCS) are reduced in osteoarthritis. Biochem Biophys Res Commun 407:54–59

    Article  PubMed Central  PubMed  Google Scholar 

  29. Scott JL, Gabrielides C, Davidson RK, Swingler TE, Clark IM, Wallis GA et al (2010) Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis 69:1502–1510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bos SD, Bovee JV, Duijnisveld BJ, Raine EV, van Dalen WJ, Ramos YF et al (2012) Increased type II deiodinase protein in OA-affected cartilage and allelic imbalance of OA risk polymorphism rs225014 at DIO2 in human OA joint tissues. Ann Rheum Dis 71:1254–1258

    Article  CAS  PubMed  Google Scholar 

  31. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3:e3740

    Article  PubMed Central  PubMed  Google Scholar 

  32. Jones SW, Watkins G, Le Good N, Roberts S, Murphy CL, Brockbank SM et al (2009) The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr Cartil 17:464–472

    Article  CAS  PubMed  Google Scholar 

  33. Diaz-Prado S, Cicione C, Muinos-Lopez E, Hermida-Gomez T, Oreiro N, Fernandez-Lopez C, et al (2012) Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord 13:144,2474-13-144

  34. Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A et al (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60:2723–2730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Swingler TE, Wheeler G, Carmont V, Elliott HR, Barter MJ, Abu-Elmagd M et al (2012) The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum 64:1909–1919

    Article  CAS  PubMed  Google Scholar 

  36. Higashiyama R, Miyaki S, Yamashita S, Yoshitaka T, Lindman G, Ito Y et al (2010) Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol 20:11–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Saito T, Nishida K, Furumatsu T, Yoshida A, Ozawa M, Ozaki T (2013) Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil 21:165–174

    Article  CAS  PubMed  Google Scholar 

  38. Culley KL, Hui W, Barter MJ, Davidson RK, Swingler TE, Destrument AP et al (2013) Class I histone deacetylase inhibition modulates metalloproteinase expression and blocks cytokine-induced cartilage degradation. Arthritis Rheum 65:1822–1830

    Article  CAS  PubMed  Google Scholar 

  39. Dvir-Ginzberg M, Steinmeyer J (2013) Towards elucidating the role of SirT1 in osteoarthritis. Front Biosci (Landmark Ed) 18:343–355

    Article  CAS  Google Scholar 

  40. Gagarina V, Gabay O, Dvir-Ginzberg M, Lee EJ, Brady JK, Quon MJ et al (2010) SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. Arthritis Rheum 62:1383–1392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Fujita N, Matsushita T, Ishida K, Kubo S, Matsumoto T, Takayama K et al (2011) Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res 29:511–515

    Article  CAS  PubMed  Google Scholar 

  42. Matsushita T, Sasaki H, Takayama K, Ishida K, Matsumoto T, Kubo S et al (2013) The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1beta in human chondrocytes. J Orthop Res 31:531–537

    Article  CAS  PubMed  Google Scholar 

  43. Moon MH, Jeong JK, Lee YJ, Seol JW, Jackson CJ, Park SY (2013) SIRT1, a class III histone deacetylase, regulates TNF-alpha-induced inflammation in human chondrocytes. Osteoarthr Cartil 21:470–480

    Article  PubMed  Google Scholar 

  44. El Mansouri FE, Chabane N, Zayed N, Kapoor M, Benderdour M, Martel-Pelletier J et al (2011) Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis Rheum 63:168–179

    Article  PubMed  Google Scholar 

  45. Rodova M, Lu Q, Li Y, Woodbury BG, Crist JD, Gardner BM et al (2011) Nfat1 regulates adult articular chondrocyte function through its age-dependent expression mediated by epigenetic histone methylation. J Bone Miner Res 26:1974–1986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kevorkian L, Young DA, Darrah C, Donell ST, Shepstone L, Porter S et al (2004) Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum 50:131–141

    Article  CAS  PubMed  Google Scholar 

  47. Murata K, Yoshitomi H, Tanida S, Ishikawa M, Nishitani K, Ito H et al (2010) Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 12:R86

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lokk K, Modhukur V, Rajashekar B, Martens K, Magi R, Kolde R et al (2014) DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol 15:R54

    Article  PubMed Central  PubMed  Google Scholar 

  49. Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33:1665–1673

    Article  CAS  PubMed  Google Scholar 

  50. Liu CC, Fang TJ, Ou TT, Wu CC, Li RN, Lin YC et al (2011) Global DNA methylation, DNMT1, and MBD2 in patients with rheumatoid arthritis. Immunol Lett 135:96–99

    Article  CAS  PubMed  Google Scholar 

  51. Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS (2013) DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis 72:110–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Glossop JR, Emes RD, Nixon NB, Haworth KE, Packham JC, Dawes PT et al (2014) Genome-wide DNA methylation profiling in rheumatoid arthritis identifies disease-associated methylation changes that are distinct to individual T- and B-lymphocyte populations. Epigenetics 9:1228–1237

    Article  PubMed  Google Scholar 

  53. de la Rica L, Urquiza JM, Gomez-Cabrero D, Islam AB, Lopez-Bigas N, Tegner J et al (2013) Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J Autoimmun 41:6–16

    Article  PubMed  Google Scholar 

  54. Bottini N, Firestein GS (2013) Epigenetics in rheumatoid arthritis: a primer for rheumatologists. Curr Rheumatol Rep 15:372,013-0372-9

  55. Ammari M, Jorgensen C, Apparailly F (2013) Impact of microRNAs on the understanding and treatment of rheumatoid arthritis. Curr Opin Rheumatol 25:225–233

    Article  CAS  PubMed  Google Scholar 

  56. Miao CG, Yang YY, He X, Xu T, Huang C, Huang Y et al (2013) New advances of microRNAs in the pathogenesis of rheumatoid arthritis, with a focus on the crosstalk between DNA methylation and the microRNA machinery. Cell Signal 25:1118–1125

    Article  CAS  PubMed  Google Scholar 

  57. Smigielska-Czepiel K, van den Berg A, Jellema P, van der Lei RJ, Bijzet J, Kluiver J et al (2014) Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun 15:115–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Lu MC, Yu CL, Chen HC, Yu HC, Huang HB, Lai NS (2014) Increased miR-223 expression in T cells from patients with rheumatoid arthritis leads to decreased IGF-1 mediated IL-10 production. Clin Exp Immunol 177:641–651

    Article  CAS  PubMed  Google Scholar 

  59. Wada TT, Araki Y, Sato K, Aizaki Y, Yokota K, Kim YT et al (2014) Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts. Biochem Biophys Res Commun 444:682–686

    Article  CAS  PubMed  Google Scholar 

  60. Gillespie J, Savic S, Wong C, Hempshall A, Inman M, Emery P et al (2012) Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum 64:418–422

    Article  CAS  PubMed  Google Scholar 

  61. Trenkmann M, Brock M, Gay RE, Kolling C, Speich R, Michel BA et al (2011) Expression and function of EZH2 in synovial fibroblasts: epigenetic repression of the Wnt inhibitor SFRP1 in rheumatoid arthritis. Ann Rheum Dis 70:1482–1488

    Article  CAS  PubMed  Google Scholar 

  62. Maciejewska-Rodrigues H, Karouzakis E, Strietholt S, Hemmatazad H, Neidhart M, Ospelt C et al (2010) Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression. J Autoimmun 35:15–22

    Article  CAS  PubMed  Google Scholar 

  63. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Vrtacnik P, Marc J, Ostanek B (2014) Epigenetic mechanisms in bone. Clin Chem Lab Med 52:589–608

    Article  CAS  PubMed  Google Scholar 

  65. Harvey N, Dennison E, Cooper C (2014) Osteoporosis: a lifecourse approach. J Bone Miner Res 29:1917–1925

    Article  PubMed  Google Scholar 

  66. Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S et al (2013) Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res 28:559–573

    Article  CAS  PubMed  Google Scholar 

  67. Li H, Xie H, Liu W, Hu R, Huang B, Tan YF et al (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 119:3666–3677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A et al (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19:93–100

    Article  PubMed  Google Scholar 

  69. Lei SF, Papasian CJ, Deng HW (2011) Polymorphisms in predicted miRNA binding sites and osteoporosis. J Bone Miner Res 26:72–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Wang Y, Li L, Moore BT, Peng XH, Fang X, Lappe JM et al (2012) MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS ONE 7:e34641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Cheng P, Chen C, He HB, Hu R, Zhou HD, Xie H et al (2013) miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res 28:1180–1190

    Article  CAS  PubMed  Google Scholar 

  72. Cao Z, Moore BT, Wang Y, Peng XH, Lappe JM, Recker RR et al (2014) MiR-422a as a potential cellular MicroRNA biomarker for postmenopausal osteoporosis. PLoS ONE 9:e97098

    Article  PubMed Central  PubMed  Google Scholar 

  73. Somers EC, Richardson BC (2014) Environmental exposures, epigenetic changes and the risk of lupus. Lupus 23:568–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Coit P, Jeffries M, Altorok N, Dozmorov MG, Koelsch KA, Wren JD et al (2013) Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J Autoimmun 43:78–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Zhang Y, Zhao M, Sawalha AH, Richardson B, Lu Q (2013) Impaired DNA methylation and its mechanisms in CD4(+)T cells of systemic lupus erythematosus. J Autoimmun 41:92–99

    Article  PubMed  Google Scholar 

  76. Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J et al (2013) Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet 9:e1003678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Wu Z, Li X, Qin H, Zhu X, Xu J, Shi W (2013) Ultraviolet B enhances DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus via inhibiting DNMT1 catalytic activity. J Dermatol Sci 71:167–173

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Z, Song L, Maurer K, Petri MA, Sullivan KE (2010) Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun 11:124–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Hu N, Qiu X, Luo Y, Yuan J, Li Y, Lei W et al (2008) Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 35:804–810

    CAS  PubMed  Google Scholar 

  80. Zhou Y, Qiu X, Luo Y, Yuan J, Li Y, Zhong Q et al (2011) Histone modifications and methyl-CpG-binding domain protein levels at the TNFSF7 (CD70) promoter in SLE CD4+ T cells. Lupus 20:1365–1371

    Article  CAS  PubMed  Google Scholar 

  81. Liu D, Zhao H, Zhao S, Wang X (2014) MicroRNA expression profiles of peripheral blood mononuclear cells in patients with systemic lupus erythematosus. Acta Histochem 116:891–897

    Article  CAS  PubMed  Google Scholar 

  82. Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y (2009) Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 29:749–754

    Article  CAS  PubMed  Google Scholar 

  83. Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y et al (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075

    Article  CAS  PubMed  Google Scholar 

  84. Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X et al (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184:6773–6781

    Article  CAS  PubMed  Google Scholar 

  85. Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS (2003) Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111:539–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Lai NS, Chou JL, Chen GC, Liu SQ, Lu MC, Chan MW (2014) Association between cytokines and methylation of SOCS-1 in serum of patients with ankylosing spondylitis. Mol Biol Rep 41:3773–3780

    Article  CAS  PubMed  Google Scholar 

  87. Toussirot E, Abbas W, Khan KA, Tissot M, Jeudy A, Baud L et al (2013) Imbalance between HAT and HDAC activities in the PBMCs of patients with ankylosing spondylitis or rheumatoid arthritis and influence of HDAC inhibitors on TNF alpha production. PLoS ONE 8:e70939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Lai NS, Yu HC, Chen HC, Yu CL, Huang HB, Lu MC (2013) Aberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesis. Clin Exp Immunol 173:47–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Kresse SH, Rydbeck H, Skarn M, Namlos HM, Barragan-Polania AH, Cleton-Jansen AM et al (2012) Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma. PLoS ONE 7:e48262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Alholle A, Brini AT, Gharanei S, Vaiyapuri S, Arrigoni E, Dallol A et al (2013) Functional epigenetic approach identifies frequently methylated genes in Ewing sarcoma. Epigenetics 8:1198–1204

    Article  CAS  PubMed  Google Scholar 

  91. Diao Y, Guo X, Jiang L, Wang G, Zhang C, Wan J et al (2014) miR-203, a tumor suppressor frequently down-regulated by promoter hypermethylation in rhabdomyosarcoma. J Biol Chem 289:529–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Yoshitaka T, Kawai A, Miyaki S, Numoto K, Kikuta K, Ozaki T et al (2013) Analysis of microRNAs expressions in chondrosarcoma. J Orthop Res 31:1992–1998

    Article  CAS  PubMed  Google Scholar 

  93. Mahoney SE, Yao Z, Keyes CC, Tapscott SJ, Diede SJ (2012) Genome-wide DNA methylation studies suggest distinct DNA methylation patterns in pediatric embryonal and alveolar rhabdomyosarcomas. Epigenetics 7:400–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Patel N, Black J, Chen X, Marcondes AM, Grady WM, Lawlor ER et al (2012) DNA methylation and gene expression profiling of ewing sarcoma primary tumors reveal genes that are potential targets of epigenetic inactivation. Sarcoma 2012:498472

    Article  PubMed Central  PubMed  Google Scholar 

  95. Park HR, Jung WW, Kim HS, Park YK (2014) Microarray-based DNA methylation study of Ewing’s sarcoma of the bone. Oncol. Lett. 8:1613–1617

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Sadikovic B, Yoshimoto M, Al-Romaih K, Maire G, Zielenska M, Squire JA (2008) In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma. PLoS ONE 3:e2834

    Article  PubMed Central  PubMed  Google Scholar 

  97. de Bruijn DR, Allander SV, van Dijk AH, Willemse MP, Thijssen J, van Groningen JJ et al (2006) The synovial-sarcoma-associated SS18-SSX2 fusion protein induces epigenetic gene (de)regulation. Cancer Res 66:9474–9482

    Article  PubMed  Google Scholar 

  98. Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J et al (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458:313–322

    Article  PubMed  Google Scholar 

  99. Mills J, Hricik T, Siddiqi S, Matushansky I (2011) Chromatin structure predicts epigenetic therapy responsiveness in sarcoma. Mol Cancer Ther 10:313–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Pishas KI, Neuhaus SJ, Clayer MT, Schreiber AW, Lawrence DM, Perugini M et al (2014) Nutlin-3a efficacy in sarcoma predicted by transcriptomic and epigenetic profiling. Cancer Res 74:921–931

    Article  CAS  PubMed  Google Scholar 

  101. Gharanei S, Brini AT, Vaiyapuri S, Alholle A, Dallol A, Arrigoni E et al (2013) RASSF2 methylation is a strong prognostic marker in younger age patients with Ewing sarcoma. Epigenetics 8:893–898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Ouyang L, Liu P, Yang S, Ye S, Xu W, Liu X (2013) A three-plasma miRNA signature serves as novel biomarkers for osteosarcoma. Med Oncol 30:340,012-0340-7. Epub 2012 Dec 27

Download references

Acknowledgments

The authors are grateful for the insight, suggestions, and constructive criticisms provided by Prof S.H. Ralston. Thank you.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Roberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, S.B., Wootton, E., De Ferrari, L. et al. Epigenetics of osteoarticular diseases: recent developments. Rheumatol Int 35, 1293–1305 (2015). https://doi.org/10.1007/s00296-015-3260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-015-3260-y

Keywords

Navigation