Advertisement

Rheumatology International

, Volume 35, Issue 5, pp 799–814 | Cite as

Potentially effective natural drugs in treatment for the most common rheumatic disorder: osteoarthritis

  • Mohammad Hosein Farzaei
  • Fatemeh Farzaei
  • Maziar Gooshe
  • Zahra Abbasabadi
  • Nima Rezaei
  • Amir Hossein AbdolghaffariEmail author
Review Article - Therapy Review

Abstract

Osteoarthritis (OA) is a chronic condition in which imbalance between anabolic and catabolic mediators occurs leading to the destruction of homeostasis of articular cartilage. The current drugs in the management of OA can just alleviate symptoms. Hence, the research tendency toward exploration of novel sources has been grown up in order to achieve safe and efficacious drugs. Meanwhile, various components exist as novel natural drugs that may possess favorable properties for the management of OA. This review focuses on the most efficacious medicinal plants and their phytochemical agents, which have been consumed for the management of OA. Moreover, evaluation of their efficacy and molecular mechanisms of action are discussed based on numerous modern experimental investigations. More research is needed to develop therapeutic agents with disease-modifying properties to treat OA.

Keywords

Osteoarthritis Medicinal plant Oxidative stress Inflammation Pro-inflammatory cytokine Pain 

Abbreviations

NO

Nitric oxide

LT-B4

Leukotriene-B4

iNOS

Inducible NO synthase

LPS

Lipopolysaccharide

12-LOX

12-Lipoxygenase

TNF-α

Tumor necrosis factor-alpha

CYP P450

Cytochrome P450

Con A

Concanavalin A

MAPKs

Mitogen-activated protein kinase

COX1

Cyclooxygenase-1

PGE2

Prostaglandin-E2

HNE

Human neutrophil elastase

IFN-γ

Interferon-γ

IL-1β

Interloukine-1β

JNK

c-Jun N-terminal kinase

ERK

Extracellular signal-regulated kinase

NF-κB

Nuclear factor κB

MMP

Matrix metalloproteinases

GM-CSF

Granulocyte–macrophage colony-stimulating factor

PGN

Peptidoglycan

PLA2

Phospholipase A2

PHC

Primary human chondrocytes

IgG

Immunoglobulin G

CFA

Complete Freund’s adjuvant

EPP

Ethyl phenylpropiolate

PMA

Phorbol 12-myristate 13-acetate

GABA

Gamma-Aminobutyric acid

5-HT

5-Hydroxytryptamine

TPA

12-O-tetradecanoylphorbol-13-acetate

MDA

Malondialdehyde

MPO

Myeloperoxidase

SOD

Superoxide dismutase

CAT

Catalase

GPx

Glutathione peroxidase

TNBS

2,4,6-Trinitrobenzene sulfonic acid

BALB/c

Inbred strain of mouse

TLR

Toll-like receptor

FGF

Fibroblast growth factor

NGF

Nerve growth factor

VEGF

Vascular epidermal growth factor

EGF

Epidermal growth factor

Notes

Acknowledgments

The authors thank Dr Emilio B. Gonzalez for his excellent editorial assistance.

Conflict of interest

The authors have declared that there is no conflict of interest.

References

  1. 1.
    Brooks PM (2002) Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. Curr Opin Rheumatol 14(5):573–577CrossRefPubMedGoogle Scholar
  2. 2.
    Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213(3):626–634. doi: 10.1002/jcp.21258 CrossRefPubMedGoogle Scholar
  3. 3.
    Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, Im HJ (2013) A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527(2):440–447. doi: 10.1016/j.gene.2013.05.069 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Wood AM, Brock TM, Heil K, Holmes R, Weusten A (2013) A review on the management of hip and knee osteoarthritis. Int J Chron Dis 2013Google Scholar
  5. 5.
    Spector TD (1993) Epidemiology of the rheumatic diseases. Curr Opin Rheumatol 5(2):132–137CrossRefPubMedGoogle Scholar
  6. 6.
    Hunter DJ, McDougall JJ, Keefe FJ (2008) The symptoms of osteoarthritis and the genesis of pain. Rheum Dis Clin North Am 34(3):623–643. doi: 10.1016/j.rdc.2008.05.004 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6(11):625–635. doi: 10.1038/nrrheum.2010.159 CrossRefPubMedGoogle Scholar
  8. 8.
    Houard X, Goldring MB, Berenbaum F (2013) Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 15(11):375. doi: 10.1007/s11926-013-0375-6 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Gardner GC (2005) Inflammatory arthritis in the era of the biologics. Clinical and Applied Immunology Reviews 5(1):19–44CrossRefGoogle Scholar
  10. 10.
    Goldring MB, Otero M (2011) Inflammation in osteoarthritis. Curr Opin Rheumatol 23(5):471–478. doi: 10.1097/BOR.0b013e328349c2b1 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Fernandes JC, Martel-Pelletier J, Pelletier JP (2002) The role of cytokines in osteoarthritis pathophysiology. Biorheology 39(1–2):237–246PubMedGoogle Scholar
  12. 12.
    Roughley PJ (2006) The structure and function of cartilage proteoglycans. Eur Cells Mater 12:92–101Google Scholar
  13. 13.
    Huang K, Wu LD (2008) Aggrecanase and aggrecan degradation in osteoarthritis: a review. J Int Med Res 36(6):1149–1160CrossRefPubMedGoogle Scholar
  14. 14.
    Sachs D, Cunha FQ, Poole S, Ferreira SH (2002) Tumour necrosis factor-alpha, interleukin-1beta and interleukin-8 induce persistent mechanical nociceptor hypersensitivity. Pain 96(1–2):89–97CrossRefPubMedGoogle Scholar
  15. 15.
    Rezvanfar MA, Shojaei Saadi HA, Gooshe M, Abdolghaffari AH, Baeeri M, Abdollahi M (2014) Ovarian aging-like phenotype in the hyperandrogenism-induced murine model of polycystic ovary. Oxid Med Cell Longev 2014:10. doi: 10.1155/2014/948951 CrossRefGoogle Scholar
  16. 16.
    Ziskoven C, Jager M, Kircher J, Patzer T, Bloch W, Brixius K, Krauspe R (2011) Physiology and pathophysiology of nitrosative and oxidative stress in osteoarthritic joint destruction. Can J Physiol Pharmacol 89(7):455–466. doi: 10.1139/y11-055 CrossRefPubMedGoogle Scholar
  17. 17.
    Ziskoven C, Jäger M, Zilkens C, Bloch W, Brixius K, Krauspe R (2010) Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation? Orthop Rev (Pavia) 23(2):e23. doi: 10.4081/or.2010.e23
  18. 18.
    Dieppe PA, Lohmander LS (2005) Pathogenesis and management of pain in osteoarthritis. Lancet 365(9463):965–973. doi: 10.1016/s0140-6736(05)71086-2 CrossRefPubMedGoogle Scholar
  19. 19.
    Lee YC, Nassikas NJ, Clauw DJ (2011) The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis Res Ther 13(2):211. doi: 10.1186/ar3306 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Felson DT (2005) The sources of pain in knee osteoarthritis. Curr Opin Rheumatol 17(5):624–628CrossRefPubMedGoogle Scholar
  21. 21.
    Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, Im H-J (2013) A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527(2):440–447CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    van Laar M, Pergolizzi JV Jr, Mellinghoff HU, Merchante IM, Nalamachu S, O’Brien J, Perrot S, Raffa RB (2012) Pain treatment in arthritis-related pain: beyond NSAIDs. Open Rheumatol J 6:320–330. doi: 10.2174/1874312901206010320 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Dray A, Read SJ (2007) Arthritis and pain. Future targets to control osteoarthritis pain. Arthritis Res Ther 9(3):212. doi: 10.1186/ar2178 CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Valdes AM, Spector TD (2011) Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol 7(1):23–32. doi: 10.1038/nrrheum.2010.191 CrossRefPubMedGoogle Scholar
  25. 25.
    Kosek E, Ordeberg G (2000) Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following, surgical pain relief. Pain 88(1):69–78CrossRefPubMedGoogle Scholar
  26. 26.
    Long L, Soeken K, Ernst E (2001) Herbal medicines for the treatment of osteoarthritis: a systematic review. Rheumatology (Oxford, England) 40(7):779–793CrossRefGoogle Scholar
  27. 27.
    Farzaei MH, Khanavi M, Moghaddam G, Dolatshahi F, Rahimi R, Shams-Ardekani MR, Amin G, Hajimahmoodi M (2014) Standardization of Tragopogon graminifolius DC. extract based on phenolic compounds and antioxidant activity. J Chem 2014:6. doi: 10.1155/2014/425965 CrossRefGoogle Scholar
  28. 28.
    Benedek B, Kopp B, Melzig MF (2007) Achillea millefolium L. s.l.—is the anti-inflammatory activity mediated by protease inhibition? J Ethnopharmacol 113(2):312–317. doi: 10.1016/j.jep.2007.06.014 CrossRefPubMedGoogle Scholar
  29. 29.
    Zaringhalam J, Akbari A, Tekieh E, Manaheji H, Rezazadeh S (2010) Achillea santolina reduces serum interleukin-6 level and hyperalgesia during complete Freund’s adjuvant-induced inflammation in male Wistar rats. J Chin Integr Med 8(12):1180–1189CrossRefGoogle Scholar
  30. 30.
    Gomez M, Saenz M, Garcia M, Fernandez M (1999) Study of the topical anti-inflammatory activity of Achillea ageratum on chronic and acute inflammation models. Z Naturforsch C 54(12):937–941PubMedGoogle Scholar
  31. 31.
    Elmann A, Mordechay S, Erlank H, Telerman A, Rindner M, Ofir R (2011) Anti-Neuroinflammatory effects of the extract of Achillea fragrantissima. BMC Complement Altern Med 11(1):98CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Kim H, Han TH, Lee SG (2009) Anti-inflammatory activity of a water extract of Acorus calamus L. leaves on keratinocyte HaCaT cells. J Ethnopharmacol 122(1):149–156. doi: 10.1016/j.jep.2008.12.011 CrossRefPubMedGoogle Scholar
  33. 33.
    Khan MAA, Islam MT (2012) Analgesic and cytotoxic activity of Acorus calamus L., Kigelia pinnata L., Mangifera indica L. and Tabernaemontana divaricata L. J Pharm Bioallied Sci 4(2):149CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Hodge G, Hodge S, Han P (2002) Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry 48(4):209–215CrossRefPubMedGoogle Scholar
  35. 35.
    Simin N, Orcic D, Cetojevic-Simin D, Mimica-Dukic N, Anackov G, Beara I, Mitic-Culafic D, Bozin B (2013) Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae). LWT-Food Science and TechnologyGoogle Scholar
  36. 36.
    Woo KW, Moon E, Park SY, Kim SY, Lee KR (2012) Flavonoid glycosides from the leaves of Allium victorialis var. platyphyllum and their anti-neuroinflammatory effects. Bioorg Med Chem Lett 15(24):7465–7470. doi: 10.1016/j.bmcl
  37. 37.
    Habeeb F, Stables G, Bradbury F, Nong S, Cameron P, Plevin R, Ferro VA (2007) The inner gel component of Aloe vera suppresses bacterial-induced pro-inflammatory cytokines from human immune cells. Methods 42(4):388–393CrossRefPubMedGoogle Scholar
  38. 38.
    Kammoun M, Miladi S, Ben Ali Y, Damak M, Gargouri Y, Bezzine S (2011) In vitro study of the PLA2 inhibition and antioxidant activities of Aloe vera leaf skin extracts. Lipids Health Dis 10:30. doi: 10.1186/1476-511x-10-30 CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Vijayalakshmi D, Dhandapani R, Jayaveni S, Jithendra PS, Rose C, Mandal AB (2012) In vitro anti inflammatory activity of Aloe vera by down regulation of MMP-9 in peripheral blood mononuclear cells. J Ethnopharmacol 141(1):542–546CrossRefPubMedGoogle Scholar
  40. 40.
    Davis RH, Rosenthal KY, Cesario LR, Rouw GA (1989) Processed Aloe vera administered topically inhibits inflammation. J Am Podiatr Med Assoc 79(8):395–397CrossRefPubMedGoogle Scholar
  41. 41.
    Hage-Sleiman R, Mroueh M, Daher CF (2011) Pharmacological evaluation of aqueous extract of Althaea officinalis flower grown in Lebanon. Pharm Biol 49(3):327–333. doi: 10.3109/13880209.2010.516754 CrossRefPubMedGoogle Scholar
  42. 42.
    Wang D, Shang J, Yu Q (1989) Analgesic and anti-inflammatory effects of the flower of Althaea rosea (L.) Cav]. China J Chin Mater Med 14(1):46Google Scholar
  43. 43.
    Kim YJ, Shin Y, Lee KH, Kim TJ (2012) Anethum graveloens flower extracts inhibited a lipopolysaccharide-induced inflammatory response by blocking iNOS expression and NF-kappaB activity in macrophages. Biosci Biotechnol Biochem 76(6):1122–1127PubMedGoogle Scholar
  44. 44.
    Valadi A, Nasri S, Abbasi N, Amin GR (2010) ANTInociceptive and anti-inflammatory effects of hydroalchoholic extract of anethum graveolens L. Seed. J Med Plants 9(34):124–130Google Scholar
  45. 45.
    Fan AY, Lao L, Zhang RX, Zhou AN, Wang LB, Moudgil KD, Lee DY, Ma ZZ, Zhang WY, Berman BM (2005) Effects of an acetone extract of Boswellia carterii Birdw. (Burseraceae) gum resin on adjuvant-induced arthritis in lewis rats. J Ethnopharmacol 101(1–3):104–109. doi: 10.1016/j.jep.2005.03.033 CrossRefPubMedGoogle Scholar
  46. 46.
    Gayathri B, Manjula N, Vinaykumar KS, Lakshmi BS, Balakrishnan A (2007) Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFalpha, IL-1beta, NO and MAP kinases. Int Immunopharmacol 7(4):473–482. doi: 10.1016/j.intimp.2006.12.003 CrossRefPubMedGoogle Scholar
  47. 47.
    Kimmatkar N, Thawani V, Hingorani L, Khiyani R (2003) Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee—a randomized double blind placebo controlled trial. Phytomedicine 10(1):3–7. doi: 10.1078/094471103321648593 CrossRefPubMedGoogle Scholar
  48. 48.
    Danquah CA, Woode E, Boakye-Gyasi E (2011) Anti-arthritic effects of an ethanolic extract of capparis erythrocarpos isert roots in Freund’s adjuvant-induced arthritis in rats. J Pharmacol Toxicol 6(3):201–217CrossRefGoogle Scholar
  49. 49.
    Feng X, Lu J, Xin H, Zhang L, Wang Y, Tang K (2011) Anti-arthritic active fraction of Capparis spinosa L. fruits and its chemical constituents. Yakugaku Zasshi 131(3):423–429CrossRefPubMedGoogle Scholar
  50. 50.
    Bektas N, Arslan R, Goger F, Kirimer N, Ozturk Y (2012) Investigation for anti-inflammatory and anti-thrombotic activities of methanol extract of Capparis ovata buds and fruits. J Ethnopharmacol 142(1):48–52CrossRefPubMedGoogle Scholar
  51. 51.
    Arslan R, Bektas N, Ozturk Y (2010) Antinociceptive activity of methanol extract of fruits of Capparis ovata in mice. J Ethnopharmacol 131(1):28–32CrossRefPubMedGoogle Scholar
  52. 52.
    Lewis A, Levy A (2011) Anti-inflammatory activities of Cassia alata leaf extract in complete Freund’s adjuvant arthritis in rats. West Indian Med J 60(6):615–621PubMedGoogle Scholar
  53. 53.
    Sreejith G, Latha P, Shine V, Anuja G, Suja S, Sini S, Shyamal S, Pradeep S, Shikha P, Rajasekharan S (2010) Anti-allergic, anti-inflammatory and anti-lipidperoxidant effects of Cassia occidentalis LinnGoogle Scholar
  54. 54.
    Nsonde Ntandou G, Banzouzi J, Mbatchi B, Elion-Itou R, Etou-Ossibi A, Ramos S, Benoit-Vical F, Abena A, Ouamba J (2010) Analgesic and anti-inflammatory effects of Cassia siamea Lam. stem bark extracts. J Ethnopharmacol 127(1):108–111CrossRefPubMedGoogle Scholar
  55. 55.
    Liao JC, Deng JS, Chiu CS, Hou WC, Huang SS, Shie PH, Huang GJ (2012) Anti-inflammatory activities of cinnamomum cassia constituents in vitro and in vivo. Evid Based Complement Alternat Med: eCAM 2012:429320. doi: 10.1155/2012/429320 PubMedCentralPubMedGoogle Scholar
  56. 56.
    Yu T, Lee S, Yang WS, Jang HJ, Lee YJ, Kim TW, Kim SY, Lee J, Cho JY (2012) The ability of an ethanol extract of Cinnamomum cassia to inhibit Src and spleen tyrosine kinase activity contributes to its anti-inflammatory action. J Ethnopharmacol 139(2):566–573. doi: 10.1016/j.jep.2011.11.051 CrossRefPubMedGoogle Scholar
  57. 57.
    Vetal S, Bodhankar SL, Mohan V, Thakurdesai PA (2013) Anti-inflammatory and anti-arthritic activity of type-A procyanidine polyphenols from bark of Cinnamomum zeylanicum in rats. Food Sci Human WellnessGoogle Scholar
  58. 58.
    Nair V, Kumar R, Singh S, Gupta Y (2012) Investigation into the anti-inflammatory and antigranuloma activity of Colchicum luteum Baker in experimental models. Inflammation 35(3):881–888CrossRefPubMedGoogle Scholar
  59. 59.
    Nair V, Singh S, Gupta Y (2011) Evaluation of the disease modifying activity of Colchicum luteum Baker in experimental arthritis. J Ethnopharmacol 133(2):303–307CrossRefPubMedGoogle Scholar
  60. 60.
    Su S, Wang T, Duan J-A, Zhou W, Hua Y-Q, Tang Y-P, Yu L, Qian D-W (2011) Anti-inflammatory and analgesic activity of different extracts of Commiphora myrrha. J Ethnopharmacol 134(2):251–258CrossRefPubMedGoogle Scholar
  61. 61.
    Manjula N, Gayathri B, Vinaykumar KS, Shankernarayanan NP, Vishwakarma RA, Balakrishnan A (2006) Inhibition of MAP kinases by crude extract and pure compound isolated from Commiphora mukul leads to down regulation of TNF-alpha, IL-1beta and IL-2. Int Immunopharmacol 6(2):122–132. doi: 10.1016/j.intimp.2005.07.001 CrossRefPubMedGoogle Scholar
  62. 62.
    Makabe H, Maru N, Kuwabara A, Kamo T, Hirota M (2006) Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Nat Prod Res 20(7):680–685CrossRefPubMedGoogle Scholar
  63. 63.
    Kaushik ML, Jalalpure SS (2011) Effect of Curcuma zedoaria Rosc root extracts on behavioral and radiology changes in arthritic rats. J Adv Pharm Technol Res 2(3):170CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Sodsai A, Piyachaturawat P, Sophasan S, Suksamrarn A, Vongsakul M (2007) Suppression by Curcuma comosa Roxb. of pro-inflammatory cytokine secretion in phorbol-12-myristate-13-acetate stimulated human mononuclear cells. Int Immunopharmacol 7(4):524–531. doi: 10.1016/j.intimp.2006.12.013 CrossRefPubMedGoogle Scholar
  65. 65.
    Ahmadiani A, Hosseiny J, Semnanian S, Javan M, Saeedi F, Kamalinejad M, Saremi S (2000) Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract. J Ethnopharmacol 72(1):287–292CrossRefPubMedGoogle Scholar
  66. 66.
    Liao C-R, Chang Y-S, Peng W-H, Lai S-C, Ho Y-L (2012) Analgesic and anti-inflammatory activities of the methanol extract of Elaeagnus oldhamii Maxim. in mice. Am J Chin Med 40(03):581–597CrossRefPubMedGoogle Scholar
  67. 67.
    Huang N, Rizshsky L, Hauck CC, Nikolau BJ, Murphy PA, Birt DF (2012) The inhibition of lipopolysaccharide-induced macrophage inflammation by 4 compounds in Hypericum perforatum extract is partially dependent on the activation of SOCS3. Phytochemistry 76:106–116CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Hammer KD, Yum M-Y, Dixon PM, Birt DF (2010) Identification of JAK–STAT pathways as important for the anti-inflammatory activity of a Hypericum perforatum fraction and bioactive constituents in RAW 264.7 mouse macrophages. Phytochemistry 71(7):716–725CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Süntar IP, Akkol EK, Yılmazer D, Baykal T, Kırmızıbekmez H, Alper M, Yeşilada E (2010) Investigations on the in vivo wound healing potential of hypericum perforatum L. J Ethnopharmacol 127(2):468–477CrossRefPubMedGoogle Scholar
  70. 70.
    Sanchez-Mateo CC, Bonkanka CX, Hernandez-Perez M, Rabanal RM (2006) Evaluation of the analgesic and topical anti-inflammatory effects of Hypericum reflexum L. fil. J Ethnopharmacol 107(1):1–6. doi: 10.1016/j.jep.2006.01.032 CrossRefPubMedGoogle Scholar
  71. 71.
    Kaithwas G, Majumdar DK (2010) Therapeutic effect of Linum usitatissimum (flaxseed/linseed) fixed oil on acute and chronic arthritic models in albino rats. Inflammopharmacology 18(3):127–136CrossRefPubMedGoogle Scholar
  72. 72.
    Kaithwas G, Mukherjee A, Chaurasia A, Majumdar DK (2011) Antiinflammatory, analgesic and antipyretic activities of Linum usitatissimum L.(flaxseed/linseed) fixed oilGoogle Scholar
  73. 73.
    Abad A, Nouri M, Gharjanie A, Tavakoli F (2011) Effect of Matricaria chamomilla Hydroalcoholic extract on cisplatin-induced neuropathy in mice. Chin J Nat Med 9(2):126–131Google Scholar
  74. 74.
    Soltanian AR, Mehdibarzi D, Faghihzadeh S, Naseri M, Gerami A (2010) Mixture of Arnebia euchroma and Matricaria chamomilla (Marhame-Mafasel) for pain relief of osteoarthritis of the knee–a two-treatment, two-period crossover trial. Archives Med Sci: AMS 6(6):950CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Feisst C, Franke L, Appendino G, Werz O (2005) Identification of molecular targets of the oligomeric nonprenylated acylphloroglucinols from Myrtus communis and their implication as anti-inflammatory compounds. J Pharmacol Exp Ther 315(1):389–396CrossRefPubMedGoogle Scholar
  76. 76.
    Maxia A, Frau MA, Falconieri D, Karchuli MS, Kasture S (2011) Essential oil of Myrtus communis inhibits inflammation in rats by reducing serum IL-6 and TNF-alpha. Nat Prod Commun 6(10):1545–1548PubMedGoogle Scholar
  77. 77.
    Hosseinzadeh H, Khoshdel M, Ghorbani M (2011) Antinociceptive, Anti-inflammatory Effects and Acute Toxicity of Aqueous and Ethanolic Extracts of Myrtus communis L. aerial parts in mice. J Acupunct Meridian Stud 4(4):242–247CrossRefPubMedGoogle Scholar
  78. 78.
    Ghannadi A, Hajhashemi V, Jafarabadi H (2005) An investigation of the analgesic and anti-inflammatory effects of Nigella sativa seed polyphenols. J Med Food 8(4):488–493CrossRefPubMedGoogle Scholar
  79. 79.
    Gheita TA, Kenawy SA (2012) Effectiveness of Nigella sativa oil in the management of rheumatoid arthritis patients: a placebo controlled study. Phytother Res 26(8):1246–1248CrossRefPubMedGoogle Scholar
  80. 80.
    Dang G, Parekar R, Kamat S, Scindia A, Rege N (2011) Antiinflammatory activity of Phyllanthus emblica, Plumbago zeylanica and Cyperus rotundus in acute models of inflammation. Phytother Res 25(6):904–908CrossRefPubMedGoogle Scholar
  81. 81.
    Kiemer AK, Hartung T, Huber C, Vollmar AM (2003) Phyllanthus amarus has anti-inflammatory potential by inhibition of iNOS, COX-2, and cytokines via the NF-κB pathway. J Hepatol 38(3):289–297CrossRefPubMedGoogle Scholar
  82. 82.
    Kassuya CA, Silvestre AA, Rehder VLG, Calixto JB (2003) Anti-allodynic and anti-oedematogenic properties of the extract and lignans from Phyllanthus amarus in models of persistent inflammatory and neuropathic pain. Eur J Pharmacol 478(2):145–153CrossRefPubMedGoogle Scholar
  83. 83.
    Ahmad NS, Waheed A, Farman M, Qayyum A (2010) Analgesic and anti-inflammatory effects of Pistacia integerrima extracts in mice. J Ethnopharmacol 129(2):250–253CrossRefPubMedGoogle Scholar
  84. 84.
    Maxia A, Sanna C, Frau MA, Piras A, Karchuli MS, Kasture V (2011) Anti-inflammatory activity of Pistacia lentiscus essential oil: involvement of IL-6 and TNF-alpha. Nat Prod Commun 6(10):1543–1544PubMedGoogle Scholar
  85. 85.
    Giner-Larza EM, Manez S, Giner RM, Recio MC, Prieto JM, Cerdá-Nicolás M, Ríos J (2002) Anti-inflammatory triterpenes from Pistacia terebinthus galls. Planta Med 68(04):311–315CrossRefPubMedGoogle Scholar
  86. 86.
    Raghav S, Gupta B, Agrawal C, Goswami K, Das H (2006) Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J Ethnopharmacol 104(1):234–239CrossRefPubMedGoogle Scholar
  87. 87.
    Ratheesh M, Shyni G, Helen A (2009) Methanolic extract of Ruta graveolens L. inhibits inflammation and oxidative stress in adjuvant induced model of arthritis in rats. Inflammopharmacology 17(2):100–105CrossRefPubMedGoogle Scholar
  88. 88.
    Ratheesh M, Shyni G, Sindhu G, Helen A (2010) Protective effects of isolated polyphenolic and alkaloid fractions of Ruta graveolens L. on acute and chronic models of inflammation. Inflammation 33(1):18–24CrossRefPubMedGoogle Scholar
  89. 89.
    Ahmadiani A, Fereidoni M, Semnanian S, Kamalinejad M, Saremi S (1998) Antinociceptive and anti-inflammatory effects of Sambucus ebulus rhizome extract in rats. J Ethnopharmacol 61(3):229–235CrossRefPubMedGoogle Scholar
  90. 90.
    Chien T, Chen L, Lee C, Lee F, Wang C (2008) Anti-inflammatory constituents of Zingiber zerumbet. Food Chem 110(3):584–589CrossRefGoogle Scholar
  91. 91.
    Khalid MH, Akhtar MN, Mohamad AS, Perimal EK, Akira A, Israf DA, Lajis N, Sulaiman MR (2011) Antinociceptive effect of the essential oil of Zingiber zerumbet in mice: possible mechanisms. J Ethnopharmacol 137(1):345–351CrossRefPubMedGoogle Scholar
  92. 92.
    Shen CL, Smith BJ, Lo DF, Chyu MC, Dunn DM, Chen CH, Kwun IS (2012) Dietary polyphenols and mechanisms of osteoarthritis. J Nutr Biochem 23(11):1367–1377. doi: 10.1016/j.jnutbio.2012.04.001 CrossRefPubMedGoogle Scholar
  93. 93.
    Kim KH, Moon E, Kim HK, Oh JY, Kim SY, Choi SU, Lee KR (2012) Phenolic constituents from the rhizomes of Acorus gramineus and their biological evaluation on antitumor and anti-inflammatory activities. Bioorg Med Chem Lett 22(19):6155–6159. doi: 10.1016/j.bmcl.2012.08.016 CrossRefPubMedGoogle Scholar
  94. 94.
    Gomez MA, Saenz MT, Garcia MD, Fernandez MA (1999) Study of the topical anti-inflammatory activity of Achillea ageratum on chronic and acute inflammation models. Z Naturforsch [C] 54(11):937–941CrossRefGoogle Scholar
  95. 95.
    Mohammadi-Motlagh H-R, Mostafaie A, Mansouri K (2011) Anticancer and anti-inflammatory activities of shallotGoogle Scholar
  96. 96.
    Ramezani M, Hosseinzadeh H, Daneshmand N (2001) Antinociceptive effect of Elaeagnus angustifolia fruit seeds in mice. Fitoterapia 72(3):255–262CrossRefPubMedGoogle Scholar
  97. 97.
    Altman RD, Marcussen KC (2001) Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum 44(11):2531–2538CrossRefPubMedGoogle Scholar
  98. 98.
    Bliddal H, Rosetzsky A, Schlichting P, Weidner MS, Andersen LA, Ibfelt HH, Christensen K, Jensen ON, Barslev J (2000) A randomized, placebo-controlled, cross-over study of ginger extracts and ibuprofen in osteoarthritis. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 8(1):9–12. doi: 10.1053/joca.1999.0264 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mohammad Hosein Farzaei
    • 1
    • 2
  • Fatemeh Farzaei
    • 3
  • Maziar Gooshe
    • 4
    • 5
  • Zahra Abbasabadi
    • 2
  • Nima Rezaei
    • 6
    • 7
    • 8
    • 9
  • Amir Hossein Abdolghaffari
    • 10
    • 11
    Email author
  1. 1.Department of Traditional Pharmacy, Faculty of Traditional MedicineTehran University of Medical SciencesTehranIran
  2. 2.Faculty of PharmacyKermanshah University of Medical SciencesKermanshahIran
  3. 3.College of Veterinary MedicineKermanshah Razi UniversityKermanshahIran
  4. 4.Faculty of MedicineTehran University of Medical SciencesTehranIran
  5. 5.Students’ Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
  6. 6.Research Center for Immunodeficiencies, Children’s Medical CenterTehran University of Medical SciencesTehranIran
  7. 7.Molecular Immunology Research CenterTehran University of Medical SciencesTehranIran
  8. 8.Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
  9. 9.Department of Infection and Immunity, School of Medicine and Biomedical SciencesUniversity of SheffieldSheffieldUK
  10. 10.Pharmacology and Applied Medicine Department of Medicinal Plants Research Center, Institute of Medicinal PlantsACECRKarajIran
  11. 11.International CampusTehran University of Medical Sciences (ICTUMS)TehranIran

Personalised recommendations