Rheumatology International

, Volume 34, Issue 4, pp 511–516 | Cite as

Utility of an open-source DICOM viewer software (OsiriX) to assess pulmonary fibrosis in systemic sclerosis: preliminary results

  • Alarico Ariani
  • Marina Carotti
  • Marwin Gutierrez
  • Elisabetta Bichisecchi
  • Walter Grassi
  • Gian Marco Giuseppetti
  • Fausto Salaffi
Short Communication


To investigate the utility of an open-source Digital Imaging and Communication in Medicine viewer software—OsiriX—to assess pulmonary fibrosis (PF) in patients with systemic sclerosis (SSc). Chest high-resolution computed tomography (HRCT) examinations obtained from 10 patients with diagnosis of SSc were analysed by two radiologists adopting a standard semiquantitative scoring for PF. Pulmonary involvement was evaluated in three sections (superior, middle and inferior). For the assessment of the extension of PF, the adopted semiquantitative HRCT score ranged from 0 to 3 (0 = absence of PF; 1 = 1–20 % of lung section involvement; 2 = 21–40 % of lung section involvement; 3 = 41–100 % of lung section involvement). Further, a quantitative assessment (i.e. parameters of distribution of lung attenuation such as kurtosis and mean lung attenuation) of PF was independently performed on the same sections by a rheumatologist, independently and blinded to radiologists’ scoring, using OsiriX. The results obtained were compared with those of HRCT semiquantitative analysis. Intra-reader reliability of HRCT findings and feasibility of OsiriX quantitative segmentation was recorded. A significant association between the median values of kurtosis by both the quantitative OsiriX assessment and the HRCT semiquantitative analysis was found (p < 0.0001). Moreover, kurtosis correlated significantly with the mean lung attenuation (Spearman’s rho = 0.885; p = 0.0001). An excellent intra-reader reliability of HRCT findings among both readers was obtained. A significant difference between the mean time spent on the OsiriX quantitative analysis (mean 1.85 ± SD 1.3 min) and the mean time spent by the radiologist for the HRCT semiquantitative assessment (mean 8.5 ± SD 4.5 min, p < 0.00001) was noted. The study provides the new working hypothesis that OsiriX may be a useful and feasible tool to achieve a quantitative evaluation of PF in SSc patients.


Pulmonary fibrosis Systemic sclerosis DICOM HRCT kurtosis OsiriX 


  1. 1.
    Steen VD, Conte C, Owens GR, Medsger TA (1994) Severe restrictive lung disease in systemic sclerosis. Arthritis Rheum 37:1283–1289PubMedCrossRefGoogle Scholar
  2. 2.
    Karassa FB, Ioannidis JPA (2008) Mortality in systemic sclerosis. Clin Exp Rheumatol 26:S85–S93PubMedGoogle Scholar
  3. 3.
    Goh NSL, Desai SR, Veeraraghavan S et al (2008) Interstitial lung disease in systemic sclerosis: a simple staging system. Am J Respir Crit Care Med 177:1248–1254. doi:10.1164/rccm.200706-877OC PubMedCrossRefGoogle Scholar
  4. 4.
    Wells AU (2008) High-resolution computed tomography and scleroderma lung disease. Rheumatology (Oxford) 47(Suppl 5):v59–v61. doi:10.1093/rheumatology/ken271 CrossRefGoogle Scholar
  5. 5.
    Goldin JG, Lynch DA, Strollo DC et al (2008) High-resolution CT scan findings in patients with symptomatic scleroderma-related interstitial lung disease. Chest 134:358–367. doi:10.1378/chest.07-2444 PubMedCrossRefGoogle Scholar
  6. 6.
    Warrick JH, Bhalla M, Schabel SI, Silver RM (1991) High resolution computed tomography in early scleroderma lung disease. J Rheumatol 18:1520–1528PubMedGoogle Scholar
  7. 7.
    Cozzi F, Chiesura Corona M, Rizzi M et al (2001) Lung fibrosis quantified by HRCT in scleroderma patients with different disease forms and ANA specificities. Reumatismo 53:55–62PubMedGoogle Scholar
  8. 8.
    Zavaletta VA, Bartholmai BJ, Robb RA (2007) High resolution multidetector CT-aided tissue analysis and quantification of lung fibrosis. Acad Radiol 14:772–787. doi:10.1016/j.acra.2007.03.009 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Sverzellati N, Zompatori M, De Luca G et al (2005) Evaluation of quantitative CT indexes in idiopathic interstitial pneumonitis using a low-dose technique. Eur J Radiol 56:370–375. doi:10.1016/j.ejrad.2005.05.012 PubMedCrossRefGoogle Scholar
  10. 10.
    Sumikawa H, Johkoh T, Yamamoto S et al (2006) Quantitative analysis for computed tomography findings of various diffuse lung diseases using volume histogram analysis. J Comput Assist Tomogr 30:244–249PubMedCrossRefGoogle Scholar
  11. 11.
    Best AC, Lynch AM, Bozic CM et al (2003) Quantitative CT indexes in idiopathic pulmonary fibrosis: relationship with physiologic impairment. Radiology 228:407–414. doi:10.1148/radiol.2282020274 PubMedCrossRefGoogle Scholar
  12. 12.
    Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216. doi:10.1007/s10278-004-1014-6 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    LeRoy EC, Black CM, Fleischmajer R et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205PubMedGoogle Scholar
  14. 14.
    Strange C, Seibold JR (2008) Scleroderma lung disease: “if you don’t know where you are going, any road will take you there”. Am J Respir Crit Care Med 177:1178–1179. doi:10.1164/rccm.200802-304ED PubMedCrossRefGoogle Scholar
  15. 15.
    Collins CD, Wells AU, Hansell DM et al (1994) Observer variation in pattern type and extent of disease in fibrosing alveolitis on thin section computed tomography and chest radiography. Clin Radiol 49:236–240PubMedCrossRefGoogle Scholar
  16. 16.
    Lynch DA (2007) Quantitative CT of fibrotic interstitial lung disease. Chest 131:643–644. doi:10.1378/chest.06-2955 PubMedCrossRefGoogle Scholar
  17. 17.
    Sumikawa H, Johkoh T, Yamamoto S et al (2009) Computed tomography values calculation and volume histogram analysis for various computed tomographic patterns of diffuse lung diseases. J Comput Assist Tomogr 33:731–738. doi:10.1097/RCT.0b013e31818da65c PubMedCrossRefGoogle Scholar
  18. 18.
    Camiciottoli G, Orlandi I, Bartolucci M et al (2007) Lung CT densitometry in systemic sclerosis: correlation with lung function, exercise testing, and quality of life. Chest 131:672–681. doi:10.1378/chest.06-1401 PubMedCrossRefGoogle Scholar
  19. 19.
    Kim HG, Tashkin DP, Clements PJ et al (2010) A computer-aided diagnosis system for quantitative scoring of extent of lung fibrosis in scleroderma patients. Clin Exp Rheumatol 28:S26–S35PubMedCentralPubMedGoogle Scholar
  20. 20.
    Hoffman EA, Reinhardt JM, Sonka M et al (2003) Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function. Acad Radiol 10:1104–1118PubMedCrossRefGoogle Scholar
  21. 21.
    Kazerooni EA, Martinez FJ, Flint A et al (1997) Thin-section CT obtained at 10-mm increments versus limited three-level thin-section CT for idiopathic pulmonary fibrosis: correlation with pathologic scoring. AJR Am J Roentgenol 169:977–983PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alarico Ariani
    • 1
  • Marina Carotti
    • 2
  • Marwin Gutierrez
    • 1
  • Elisabetta Bichisecchi
    • 2
  • Walter Grassi
    • 1
  • Gian Marco Giuseppetti
    • 2
  • Fausto Salaffi
    • 1
  1. 1.Clinica Reumatologica, Dipartimento di Scienze Cliniche e MolecolariUniversità Politecnica delle MarcheAnconaItaly
  2. 2.S. O. D. Radiologia Clinica, Dipartimento di Scienze RadiologicheOspedali RiunitiAnconaItaly

Personalised recommendations