Skip to main content

Advertisement

Log in

Levels of dipeptidyl peptidase IV/CD26 substrates neuropeptide Y and vasoactive intestinal peptide in rheumatoid arthritis patients

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

A Letter to the Editor - Emerging Hypotheses to this article was published on 05 October 2014

Abstract

Neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) have their biological half-lives controlled by dipeptidyl peptidase IV (DPP IV/CD26). Several lines of evidence suggest the involvement of NPY in the regulation of rheumatoid arthritis (RA), and VIP has already been identified as a potent anti-inflammatory factor that reduces joint inflammation. The role of DPP IV/CD26 in the pathogenesis of RA has been indicated, but its mediator actions involving NPY and VIP have not been well investigated, so the aim of this study was to find an association between NPY, VIP, and DPP IV/CD26 in RA patients. Assessment of NPY, VIP, DPP IV/CD26 as well as some other inflammatory markers was carried out in 20 RA patients being treated with different types of drugs. Control group consisted of 18 osteoarthritis patients. Synovial fluid and serum content of investigated molecules was determined by ELISA and DPP IV/CD26 activity was measured spectrophotometrically. Immunodetection showed elevated levels of NPY and VIP in RA patients, with a significant increase in synovial fluid, while concentration and activity of DPP IV/CD26 were significantly decreased in both synovial fluid and serum. Positive correlations between serum DPP IV/CD26 concentration and activity (R = 0.6961), as well as between serum and synovial fluid concentration of VIP (R = 0.7029) were found. In RA group, NPY, VIP, and DPP IV/CD26 concentrations were not affected by the administration of drugs. The results of this study indicate a connection between elevated concentration of NPY and VIP and decreased DPP IV/CD26 activity and concentration, suggesting a potential role of these molecules in the immunomodulation of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gorrell MD, Gysbers V, McCaughan GW (2001) CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol 54(3):249–264

    Article  PubMed  CAS  Google Scholar 

  2. Sedo A, Busek P, Scholzova E, Malik R, Vlasicova K, Janackova S, Mares V (2004) ‘Dipeptidyl peptidase-IV activity and/or structure homologs’ (DASH) in growth-modulated glioma cell lines. Biol Chem 385(6):557–559

    Article  PubMed  CAS  Google Scholar 

  3. Mentlein R (1999) Dipeptidyl-peptidase IV (CD26)–role in the inactivation of regulatory peptides. Regul Pept 85(1):9–24

    Article  PubMed  CAS  Google Scholar 

  4. Sedo A, Duke-Cohan JS, Balaziova E, Sedova LR (2005) Dipeptidyl peptidase IV activity and/or structure homologs: contributing factors in the pathogenesis of rheumatoid arthritis? Arthritis Res Therapy 7(6):253–269

    Article  CAS  Google Scholar 

  5. Iwamoto T, Okamoto H, Toyama Y, Momohara S (2008) Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J 275(18):4448–4455

    Article  PubMed  CAS  Google Scholar 

  6. Chen G, Hao J, Xi Y, Wang W, Wang Z, Li N, Li W (2008) The therapeutic effect of vasoactive intestinal peptide on experimental arthritis is associated with CD4+ CD25+ T regulatory cells. Scand J Immunol 68(6):572–578

    Article  PubMed  CAS  Google Scholar 

  7. Ameri P, Ferone D (2012) Diffuse endocrine system, neuroendocrine tumors and immunity: what’s new? Neuroendocrinology 95(4):267–276

    Google Scholar 

  8. Abid K, Rochat B, Lassahn PG, Stocklin R, Michalet S, Brakch N, Aubert JF, Vatansever B, Tella P, De Meester I, Grouzmann E (2009) Kinetic study of neuropeptide Y (NPY) proteolysis in blood and identification of NPY3-35: a new peptide generated by plasma kallikrein. J Biol Chem 284(37):24715–24724

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Wheway J, Herzog H, Mackay F (2007) NPY and receptors in immune and inflammatory diseases. Curr Topics Med Chem 7(17):1743–1752

    Article  CAS  Google Scholar 

  10. Delgado M, Pozo D, Ganea D (2004) The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56(2):249–290

    Article  PubMed  CAS  Google Scholar 

  11. Chorny A, Gonzalez-Rey E, Varela N, Robledo G, Delgado M (2006) Signaling mechanisms of vasoactive intestinal peptide in inflammatory conditions. Regul Pept 137(1–2):67–74

    Article  PubMed  CAS  Google Scholar 

  12. Harle P, Straub RH, Wiest R, Mayer A, Scholmerich J, Atzeni F, Carrabba M, Cutolo M, Sarzi-Puttini P (2006) Increase of sympathetic outflow measured by neuropeptide Y and decrease of the hypothalamic-pituitary-adrenal axis tone in patients with systemic lupus erythematosus and rheumatoid arthritis: another example of uncoupling of response systems. Ann Rheum Dis 65(1):51–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Bedoui S, Miyake S, Straub RH, von Horsten S, Yamamura T (2004) More sympathy for autoimmunity with neuropeptide Y? Trends Immunol 25(10):508–512

    Article  PubMed  CAS  Google Scholar 

  14. Mapp PI, Kidd BL, Gibson SJ, Terry JM, Revell PA, Ibrahim NB, Blake DR, Polak JM (1990) Substance P-, calcitonin gene-related peptide- and C-flanking peptide of neuropeptide Y-immunoreactive fibres are present in normal synovium but depleted in patients with rheumatoid arthritis. Neuroscience 37(1):143–153

    Article  PubMed  CAS  Google Scholar 

  15. Larsson J, Ekblom A, Henriksson K, Lundeberg T, Theodorsson E (1991) Concentration of substance P, neurokinin A, calcitonin gene-related peptide, neuropeptide Y and vasoactive intestinal polypeptide in synovial fluid from knee joints in patients suffering from rheumatoid arthritis. Scand J Rheum 20(5):326–335

    Article  PubMed  CAS  Google Scholar 

  16. Delgado M, Abad C, Martinez C, Leceta J, Gomariz RP (2001) Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med 7(5):563–568

    Article  PubMed  CAS  Google Scholar 

  17. Juarranz MG, Santiago B, Torroba M, Gutierrez-Canas I, Palao G, Galindo M, Abad C, Martinez C, Leceta J, Pablos JL, Gomariz RP (2004) Vasoactive intestinal peptide modulates proinflammatory mediator synthesis in osteoarthritic and rheumatoid synovial cells. Rheumatology (Oxford, England) 43(4):416–422

    Article  CAS  Google Scholar 

  18. Gutierrez-Canas I, Juarranz Y, Santiago B, Martinez C, Gomariz RP, Pablos JL, Leceta J (2008) Immunoregulatory properties of vasoactive intestinal peptide in human T cell subsets: implications for rheumatoid arthritis. Brain Behav Immun 22(3):312–317

    Article  PubMed  CAS  Google Scholar 

  19. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovsky J, Wolfe F, Hawker G (2010) rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 69(9):1580–1588

    Article  PubMed  Google Scholar 

  20. Zhang W, Doherty M, Peat G, Bierma-Zeinstra MA, Arden NK, Bresnihan B, Herrero-Beaumont G, Kirschner S, Leeb BF, Lohmander LS, Mazieres B, Pavelka K, Punzi L, So AK, Tuncer T, Watt I, Bijlsma JW EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis 69(3):483–489

  21. Kreisel W, Heussner R, Volk B, Buchsel R, Reutter W, Gerok W (1982) Identification of the 110000 Mr glycoprotein isolated from rat liver plasma membrane as dipeptidylaminopeptidase IV. FEBS Lett 147(1):85–88

    Article  PubMed  CAS  Google Scholar 

  22. Cooles FA, Isaacs JD (2011) Pathophysiology of rheumatoid arthritis. Curr Opin Rheumatol 23(3):233–240

    Google Scholar 

  23. Costa-Pinto FA, Palermo-Neto J (2010) Neuroimmune interactions in stress. Neuroimmunomodulation 17(3):196–199

    Google Scholar 

  24. Souza-Moreira L, Campos-Salinas J, Caro M, Gonzalez-Rey E (2011) Neuropeptides as pleiotropic modulators of the immune response. Neuroendocrinology 94(2):89–100

    Google Scholar 

  25. Busso N, Wagtmann N, Herling C, Chobaz-Peclat V, Bischof-Delaloye A, So A, Grouzmann E (2005) Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am J Pathol 166(2):433–442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Sromova L, Mareckova H, Sedova L, Balaziova E, Sedo A (2010) Dipeptidyl peptidase-IV in synovial fluid and in synovial fluid mononuclear cells of patients with rheumatoid arthritis. Clinica chimica acta; Int J Clin Chem 411(15–16):1046–1050

    Article  CAS  Google Scholar 

  27. Cordero OJ, Salgado FJ, Mera-Varela A, Nogueira M (2001) Serum interleukin-12, interleukin-15, soluble CD26, and adenosine deaminase in patients with rheumatoid arthritis. Rheumatol Int 21(2):69–74

    Article  PubMed  CAS  Google Scholar 

  28. Baticic L, Detel D, Kucic N, Buljevic S, Pugel EP, Varljen J (2011) Neuroimmunomodulative properties of dipeptidyl peptidase IV/CD26 in a TNBS-induced model of colitis in mice. J Cell Biochem 112 (11):3322–3333

    Google Scholar 

  29. Hagihara M, Ohhashi M, Nagatsu T (1987) Activities of dipeptidyl peptidase II and dipeptidyl peptidase IV in mice with lupus erythematosus-like syndrome and in patients with lupus erythematosus and rheumatoid arthritis. Clin Chem 33(8):1463–1465

    PubMed  CAS  Google Scholar 

  30. Muscat C, Bertotto A, Agea E, Bistoni O, Ercolani R, Tognellini R, Spinozzi F, Cesarotti M, Gerli R (1994) Expression and functional role of 1F7 (CD26) antigen on peripheral blood and synovial fluid T cells in rheumatoid arthritis patients. Clin Exp Immunol 98(2):252–256

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Stancikova M, Lojda Z, Lukac J, Ruzickova M (1992) Dipeptidyl peptidase IV in patients with systemic lupus erythematosus. Clin Exp Rheumatol 10(4):381–385

    PubMed  CAS  Google Scholar 

  32. Boonacker EP, Wierenga EA, Smits HH, Van Noorden CJ (2002) CD26/DPPIV signal transduction function, but not proteolytic activity, is directly related to its expression level on human Th1 and Th2 cell lines as detected with living cell cytochemistry. J Histochem Cytochem 50(9):1169–1177

    Article  PubMed  CAS  Google Scholar 

  33. Cuchacovich M, Gatica H, Pizzo SV, Gonzalez-Gronow M (2001) Characterization of human serum dipeptidyl peptidase IV (CD26) and analysis of its autoantibodies in patients with rheumatoid arthritis and other autoimmune diseases. Clin Exp Rheumatol 19(6):673–680

    PubMed  CAS  Google Scholar 

  34. Dolhain RJ, van der Heiden AN, ter Haar NT, Breedveld FC, Miltenburg AM (1996) Shift toward T lymphocytes with a T helper 1 cytokine-secretion profile in the joints of patients with rheumatoid arthritis. Arthritis Rheum 39(12):1961–1969

    Article  PubMed  CAS  Google Scholar 

  35. Willheim M, Ebner C, Baier K, Kern W, Schrattbauer K, Thien R, Kraft D, Breiteneder H, Reinisch W, Scheiner O (1997) Cell surface characterization of T lymphocytes and allergen-specific T cell clones: correlation of CD26 expression with T(H1) subsets. J Allergy Clin Immunol 100(3):348–355

    Article  PubMed  CAS  Google Scholar 

  36. Matteucci E, Giampietro O (2009) Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr Med Chem 16(23):2943–2951

    Article  PubMed  CAS  Google Scholar 

  37. Bedoui S, Kawamura N, Straub RH, Pabst R, Yamamura T, von Horsten S (2003) Relevance of neuropeptide Y for the neuroimmune crosstalk. J Neuroimmunol 134(1–2):1–11

    Article  PubMed  CAS  Google Scholar 

  38. Szabo SJ, Sullivan BM, Peng SL, Glimcher LH (2003) Molecular mechanisms regulating Th1 immune responses. Ann Rev Immunol 21:713–758

    Article  CAS  Google Scholar 

  39. Groneberg DA, Folkerts G, Peiser C, Chung KF, Fischer A (2004) Neuropeptide Y (NPY). Pulmonary Pharmacol Therapeutics 17(4):173–180

    Article  CAS  Google Scholar 

  40. Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D, Herzog H, Mackay F (2005) A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J Exp Med 202(11):1527–1538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Bedoui S, Miyake S, Lin Y, Miyamoto K, Oki S, Kawamura N, Beck-Sickinger A, von Horsten S, Yamamura T (2003) Neuropeptide Y (NPY) suppresses experimental autoimmune encephalomyelitis: NPY1 receptor-specific inhibition of autoreactive Th1 responses in vivo. J Immunol 171(7):3451–3458

    Article  PubMed  CAS  Google Scholar 

  42. Hassani H, Lucas G, Rozell B, Ernfors P (2005) Attenuation of acute experimental colitis by preventing NPY Y1 receptor signaling. Am J Physiol Gastrointest Liver Physiol 288(3):G550–G556

    Article  PubMed  CAS  Google Scholar 

  43. Delgado M, Abad C, Martinez C, Juarranz MG, Arranz A, Gomariz RP, Leceta J (2002) Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. J Mol Med (Berlin, Germany) 80(1):16–24

    Article  CAS  Google Scholar 

  44. Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D, Gomariz RP (1999) Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6. J Immunol 162(2):1200–1205

    PubMed  CAS  Google Scholar 

  45. Abad C, Martinez C, Juarranz MG, Arranz A, Leceta J, Delgado M, Gomariz RP (2003) Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology 124(4):961–971

    Article  PubMed  CAS  Google Scholar 

  46. Bjelke JR, Christensen J, Nielsen PF, Branner S, Kanstrup AB, Wagtmann N, Rasmussen HB (2006) Dipeptidyl peptidases 8 and 9: specificity and molecular characterization compared with dipeptidyl peptidase IV. Biochem J 396(2):391–399

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Frerker N, Wagner L, Wolf R, Heiser U, Hoffmann T, Rahfeld JU, Schade J, Karl T, Naim HY, Alfalah M, Demuth HU, von Horsten S (2007) Neuropeptide Y (NPY) cleaving enzymes: structural and functional homologues of dipeptidyl peptidase 4. Peptides 28(2):257–268

    Article  PubMed  CAS  Google Scholar 

  48. Yu DM, Ajami K, Gall MG, Park J, Lee CS, Evans KA, McLaughlin EA, Pitman MR, Abbott CA, McCaughan GW, Gorrell MD (2009) The in vivo expression of dipeptidyl peptidases 8 and 9. J Histochem Cytochem 57(11):1025–1040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant no. 062-0061245-0213, Ministry of Science, Education and Sports of the Republic of Croatia. The authors would like to thank Assistant Professor Srđan Novak, dr. med. and Nedeljka Kršanac, mag. med. biochem. for the help provided regarding sample collection.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadranka Varljen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buljevic, S., Detel, D., Pucar, L.B. et al. Levels of dipeptidyl peptidase IV/CD26 substrates neuropeptide Y and vasoactive intestinal peptide in rheumatoid arthritis patients. Rheumatol Int 33, 2867–2874 (2013). https://doi.org/10.1007/s00296-013-2823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-013-2823-z

Keywords

Navigation