Advertisement

Rheumatology International

, Volume 34, Issue 4, pp 553–558 | Cite as

Alpha 1-antitrypsin activity is markedly decreased in Wegener’s granulomatosis

  • Ali Mota
  • Abbas Sahebghadam LotfiEmail author
  • Ahmad-Reza Jamshidi
  • Saeed Najavand
Short Communication

Abstract

Alpha 1-antitrypsin (A1AT) is the most abundant proteinase inhibitor in plasma and the main inhibitor of Proteinase 3, the target antigen of antineutrophil cytoplasmic antibodies (ANCAs) that predominant in Wegeners’ granulomatosis. Α1AT deficiency correlated with ANCA-associated vasculitis. This study explores the trypsin inhibitory capacity (TIC), specific activity, and phenotypic deficiency of Α1AT in Wegener’s granulomatosis. Twenty-seven WG patients were studied. ANCA was tested by IIF and ELISA. Serum a1-anti-trypsin levels were quantified in WG patients and healthy controls by immunoturbidimetric assay. Serum TIC was assessed by the enzymatic colorimetric assay. Phenotypes of A1AT were detected by Isoelectric Focusing. A1AT concentration was equivalent in patients and controls; however, serum TIC (P = 0.001) and specific activity of A1AT (P = 0.001) were dramatically lower in WG patients. Five patients had deficient phenotypes of A1AT: MZ (n = 3), MS (n = 1) and SS (n = 1). This was correlated with an increase in the prevalence of deficient phenotypes of A1AT in WG (P = 0.01). Trypsin inhibitory capacity and specific activity of A1AT were decreased in WG patients and may be involve in disease pathogenesis and can worsen the clinical manifestations. This A1AT deficiency probably resulted from oxidative inactivation and/or enzymatic degradation of A1AT. This could result in localized deficiency of A1AT in vessel wall interfaces and lead to severe disease.

Keywords

Alpha 1-antitrypsin Antineutrophil cytoplasmic antibody Proteinase 3 Wegener’s granulomatosis 

Notes

Acknowledgments

We would like to thank Rheumatology Research Center for technical assistance. This study was supported by Tarbiat Modares University.

Conflict of interest

The authors declare no potential conflicts of interest.

References

  1. 1.
    Holle JU, Laudien M, Gross WL (2010) Clinical manifestations and treatment of Wegener’s granulomatosis. Rheum Dis Clin N Am 36:507–526CrossRefGoogle Scholar
  2. 2.
    Tomasson G, Grayson PC, Mahr AD, LaValley M, Merkel PA (2012) Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis—a meta-analysis. Rheumatology 51:100–109PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Janciauskiene S, Nita I, Subramaniyam D, Li Q, Lancaster JR, Matalon S (2008) α1-Antitrypsin inhibits the activity of the matriptase catalytic domain in vitro. Am J Respir Cell Mol Biol 39:631–637PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rao NV, Wehner NG, Marshall BC, Gray WR, Gray BH, Hoidal JR (1991) Characterization of proteinase-3 (PR-3), a neutrophil serine proteinase. Structural and functional properties. J Biol Chem 266:9540–9548PubMedGoogle Scholar
  5. 5.
    Bergin D, Hurley K, McElvaney N, Reeves E (2012) Alpha-1 antitrypsin: a potent anti-inflammatory and potential novel therapeutic agent. Arch Immunol Ther Exp (Warsz) 60:81–97CrossRefGoogle Scholar
  6. 6.
    Eriksson S, Elzouki AN (1998) 4 [alpha]1-Antitrypsin deficiency. Baillieres Clin Gastroenterol 12:257–273PubMedCrossRefGoogle Scholar
  7. 7.
    Elzouki ANY, Segelmark M, Wieslander J, Eriksson S (1994) Strong link between the alpha1-antitrypsin PiZ allele and Wegener’s granulomatosis. J Intern Med 236:543–548PubMedCrossRefGoogle Scholar
  8. 8.
    Esnault VLM, Testa A, Audrain M, Roge C, Hamidou M, Barrier JH, Sesboue R, Martin J-P, Lesavre P (1993) Alpha1-antitrypsin genetic polymorphism in ANCA-positive systemic vasculitis. Kidney Int 43:1329–1332PubMedCrossRefGoogle Scholar
  9. 9.
    Mahr AD, Edberg JC, Stone JH, Hoffman GS, St Clair EW, Specks U, Dellaripa PF, Seo P, Spiera RF, Rouhani FN, Brantly ML, Merkel PA, Granulomatosis Genetic Repository Research G (2010) Alpha1-antitrypsin deficiency–related alleles Z and S and the risk of Wegener’s granulomatosis. Arthritis Rheum 62:3760–3767PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Morris H, Morgan MD, Wood AM, Smith SW, Ekeowa UI, Herrmann K, Holle JU, Guillevin L, Lomas DA, Perez J, Pusey CD, Salama AD, Stockley R, Wieczorek S, McKnight AJ, Maxwell AP, Miranda E, Williams J, Savage CO, Harper L (2011) ANCA-associated vasculitis is linked to carriage of the Z allele of α1 antitrypsin and its polymers. Ann Rheum Dis 70:1851–1856PubMedCrossRefGoogle Scholar
  11. 11.
    Leavitt RY, Fauci AS, Bloch DA, Michel BA, Hunder GG, Arend WP, Calabrese LH, Fries JF, Lie JT, Lightfoot RW, Masi AT, McShane DJ, Mills JA, Stevens MB, Wallace SL, Zvaifler NJ (1990) The American College of rheumatology 1990 criteria for the classification of Wegener’s granulomatosis. Arthritis Rheum 33:1101–1107PubMedCrossRefGoogle Scholar
  12. 12.
    Jennette JC, Falk RJ, Andrassy K, Bacon PA, Churg J, Gross WL, Hagen EC, Hoffman GS, Hunder GG, Kallenberg CGM, McCluskey RT, Sinico RA, Rees AJ, Es LAV, Waldherr R, Wiik A (1994) Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 37:187–192PubMedCrossRefGoogle Scholar
  13. 13.
    Dietz AA, Rubinstein HM, Hodges L (1974) Measurement of Alpha1-antitrypsin in serum, by immunodiffusion and by enzymatic assay. Clin Chem 20:396–399Google Scholar
  14. 14.
    Lisowska-Myjak B, Pachecka J, Kaczyńska B, Miszkurka G, Kądziela K (2006) Serum protease inhibitor concentrations and total antitrypsin activity in diabetic and non-diabetic children during adolescence. Acta Diabetol 43:88–92PubMedCrossRefGoogle Scholar
  15. 15.
    Jeppsson JO, Franzén B (1982) Typing of genetic variants of alpha 1-antitrypsin by electrofocusing. Clin Chem 28:219–225PubMedGoogle Scholar
  16. 16.
    Savige JA, Chang L, Cook L, Burdon J, Daskalakis M, Doeryf J (1995) α1-Antitrypsin deficiency and anti-proteinase 3 antibodies in anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis. Clin Exp Immunol 100:194–197PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ames PR, Alves J, Murat I, Isenberg DA, Nourooz-Zadeh J (1999) Oxidative stress in systemic lupus erythematosus and allied conditions with vascular involvement. Rheumatology 38:529–534PubMedCrossRefGoogle Scholar
  18. 18.
    Uriarte SM, McLeish KR, Ward RA (2009) Anti-proteinase 3 antibodies both stimulate and prime human neutrophils. Nephrol Dial Transplant 24:1150–1157PubMedCrossRefGoogle Scholar
  19. 19.
    Falk RJ, Terrell RS, Charles LA, Jennette JC (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci 87:4115–4119PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18:93–105PubMedCrossRefGoogle Scholar
  21. 21.
    Taggart C, Cervantes-Laurean D, Kim G, McElvaney NG, Wehr N, Moss J, Levine RL (2000) Oxidation of either Methionine 351 or methionine 358 in α1-antitrypsin causes loss of anti-neutrophil elastase activity. J Biol Chem 275:27258–27265PubMedGoogle Scholar
  22. 22.
    Moraga F, Janciauskiene S (2000) Activation of primary human monocytes by the oxidized form of α1-antitrypsin. J Biol Chem 275:7693–7700PubMedCrossRefGoogle Scholar
  23. 23.
    Lu X, Garfield A, Rainger GE, Savage COS, Nash GB (2006) Mediation of endothelial cell damage by serine proteases, but not superoxide, released from antineutrophil cytoplasmic antibody–stimulated neutrophils. Arthritis Rheum 54:1619–1628PubMedCrossRefGoogle Scholar
  24. 24.
    Rooney CP, Taggart C, Coakley R, McElvaney NG, O’Neill SJ (2001) Anti-proteinase 3 antibody activation of neutrophils can be inhibited by alpha 1-antitrypsin. Am J Respir Cell Mol Biol 24:747–754PubMedCrossRefGoogle Scholar
  25. 25.
    Cockwell P, Brooks CJ, Adu D, Savage COS (1999) Interleukin-8: a pathogenetic role in antineutrophil cytoplasmic autoantibody-associated glomerulonephritis. Kidney Int 55:852–863PubMedCrossRefGoogle Scholar
  26. 26.
    Dolman KM, Stegeman CA, van de Wiel BA, Hack CE, von dem Borne AEGK, Kallenberg CGM, Goldschmeding R (1993) Relevance of classic anti-neutrophil cytoplasmic autoantibody (C-ANCA)-mediated inhibition of proteinase 3-α1-antitrypsin complexation to disease activity in Wegener’s granulomatosis. Clin Exp Immunol 93:405–410PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ali Mota
    • 1
  • Abbas Sahebghadam Lotfi
    • 1
    Email author
  • Ahmad-Reza Jamshidi
    • 2
  • Saeed Najavand
    • 1
  1. 1.Department of Clinical Biochemistry, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  2. 2.Rheumatology Research CenterTehran University of Medical SciencesTehranIran

Personalised recommendations