Advertisement

Rheumatology International

, Volume 33, Issue 6, pp 1387–1395 | Cite as

The genetics of Henoch–Schönlein purpura: a systematic review and meta-analysis

  • Xuelian He
  • Chunhua Yu
  • Peiwei Zhao
  • Yan Ding
  • Xiaohui Liang
  • Yulan Zhao
  • Xin Yue
  • Yanxiang WuEmail author
  • Wei Yin
Review

Abstract

Henoch–Schönlein purpura (HSP) is the most common form of systemic vasculitis of unknown etiology. This study aimed at reviewing published studies investigating the association of genetic polymorphisms with HSP and its severity. We systematically reviewed all published data on genetic risk factors for HSP by searching MEDLINE. We also performed a meta-analysis of association studies of HLA-DRB1-01, 07, and 11, angiotensin I-converting enzyme (ACE) insertion/deletion (I/D) polymorphism. We identified 45 studies investigating polymorphisms in 39 genes in association with HSP and/or its severity. Most of these genes are involved in immunological and/or inflammatory responses or vasomotor regulation. Most results were negative. The most convincing finding is the association of HLA-DRB1*01, 07, and 11 with HSP susceptibility. The overall odds ratios (ORs) for the three loci were significant for HSP: HLA-DRB1*01 (OR = 1.805, 95 % CI 1.259–2.588, p = 0.0012); HLA-DRB1*07 (OR = 0.671, 95 % CI 0.469–0.961, p = 0.058); HLA-DRB1*11 (OR = 2.001, 95 % CI 1.50–2.67, p = 0.027). Genetic regulation of endothelial function, such as polymorphisms in genes coding rennin–angiotensin system (RAS) components, endothelial nitric oxide synthases, Inter-Cellular Adhesion Molecule 1, and vascular endothelial growth factor, could also confer effect on HSP. In addition, MEFV, whose mutations cause familial Mediterranean fever, could be an important candidate gene for HSP. Further large studies are required to investigate the association between genetic polymorphisms and HSP. Alternative approaches, such as genome-wide association study, are necessary to help to identify genetic risks for HSP.

Keywords

Henoch–Schönlein purpura Genetic association studies Genetic polymorphisms 

Notes

Acknowledgments

This work was supported by the supporting program of the Ministry of Human Resource of China Oversea Returned scholars.

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    Gardner-Medwin JM, Dolezalova P, Cummins C, Southwood TR (2002) Incidence of Henoch–Schönlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet 360:1197–1202PubMedCrossRefGoogle Scholar
  2. 2.
    Yang YH, Hung CF, Hsu CR et al (2005) A nationwide survey on epidemiological characteristics of childhood Henoch–Schönlein purpura in Taiwan. Rheumatology (Oxford) 44:618–622CrossRefGoogle Scholar
  3. 3.
    Brogan PA (2007) What’s new in the aetiopathogenesis of vasculitis? Pediatr Nephrol 22:1083–1094PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang Y, Gu W, Mao J (2008) Sibling cases of Henoch-Schonlein purpura in two families and review of literature. Pediatr Dermatol 25:393–395PubMedCrossRefGoogle Scholar
  5. 5.
    Balbir-Gurman A, Nahir AM, Braun-Moscovici Y (2007) Vasculitis in siblings with familial Mediterranean fever: a report of three cases and review of the literature. Clin Rheumatol 26:1183–1185PubMedCrossRefGoogle Scholar
  6. 6.
    Monach PA, Merkel PA (2010) Genetics of vasculitis. Curr Opin Rheumatol 22:157–163PubMedCrossRefGoogle Scholar
  7. 7.
    Dillon MJ (2007) Henoch–Schönlein purpura: recent advances. Clin Exp Rheumatol 25:S66–S68PubMedGoogle Scholar
  8. 8.
    Amoli MM, Alansari A, El-Magadmi M et al (2002) Lack of association between A561C E-selectin polymorphism and large and small-sized blood vessel vasculitides. Clin Exp Rheumatol 20:575–576PubMedGoogle Scholar
  9. 9.
    Amoli MM, Calviño MC, Garcia-Porrua C, Llorca J, Ollier WE, Gonzalez-Gay MA (2004) Interleukin 1beta gene polymorphism association with severe renal manifestations and renal sequelae in Henoch–Schönlein purpura. J Rheumatol 31:295–298PubMedGoogle Scholar
  10. 10.
    Amoli MM, Garcia-Porrua C, Calviño MC, Ollier WE, Gonzalez-Gay MA (2004) Lack of association between endothelial nitric oxide synthase polymorphisms and Henoch–Schönlein purpura. J Rheumatol 31:299–301PubMedGoogle Scholar
  11. 11.
    Amoli MM, Martin J, Miranda-Filloy JA, Garcia-Porrua C, Ollier WE, Gonzalez-Gay MA (2007) Lack of association between interleukin-6 promoter polymorphism at position −174 and Henoch–Schönlein pur pura. Clin Exp Rheumatol 25:S6–S9PubMedGoogle Scholar
  12. 12.
    Amoli MM, Martin J, Miranda-Filloy JA, Garcia-Porrua C, Ollier WE, Gonzalez-Gay MA (2006) Lack of association between macrophage migration inhibitory factor gene (−173 G/C) polymorphism and cutaneous vasculitis. Clin Exp Rheumatol 24:576–579PubMedGoogle Scholar
  13. 13.
    Amoli MM, Mattey DL, Calviño MC (2001) et al Polymorphism at codon 469 of the intercellular adhesion molecule-1 locus is associated with protection against severe gastrointestinal complications in Henoch–Schönlein purpura. J Rheumatol 28:1014–1018PubMedGoogle Scholar
  14. 14.
    Amoli MM, Thomson W, Hajeer AH et al (2002) Henoch–Schönlein purpura and cutaneous leukocytoclastic angiitis exhibit different HLA-DRB1 associations. J Rheumatol 29:945–947PubMedGoogle Scholar
  15. 15.
    Amoli MM, Thomson W, Hajeer AH et al (2002) HLA-B35 association with nephritis in Henoch–Schönlein purpura. J Rheumatol 29:948–949PubMedGoogle Scholar
  16. 16.
    Amoli MM, Thomson W, Hajeer AH et al (2002) Interleukin 8 gene polymorphism is associated with increased risk of nephritis in cutaneous vasculitis. J Rheumatol 29:2367–2370PubMedGoogle Scholar
  17. 17.
    Amoli MM, Thomson W, Hajeer AH et al (2002) Interleukin 1 receptor antagonist gene polymorphism is associated with severe renal involvement and renal sequelae in Henoch–Schönlein purpura. J Rheumatol 29:1404–1407PubMedGoogle Scholar
  18. 18.
    Amoroso A, Berrino M, Canale L et al (1997) Immunogenetics of Henoch-Schoenlein disease. Eur J Immunogenet 24:323–333PubMedCrossRefGoogle Scholar
  19. 19.
    Amoroso A, Danek G, Vatta S et al (1998) Polymorphisms in angiotensin-converting enzyme gene and severity of renal disease in Henoch-Schoenlein patients. Italian Group of Renal Immunopathology. Nephrol Dial Transpl 13:3184–3188CrossRefGoogle Scholar
  20. 20.
    Dudley J, Afifi E, Gardner A, Tizard EJ, McGraw ME (2000) Polymorphism of the ACE gene in Henoch–Schönlein purpura nephritis. Pediatr Nephrol 14:218–220PubMedCrossRefGoogle Scholar
  21. 21.
    Eisenstein EM, Choi M (2006) Analysis of an uteroglobin gene polymorphism in childhood Henoch-Schonlein purpura. Pediatr Nephrol 21:782–784PubMedCrossRefGoogle Scholar
  22. 22.
    Dagan E, Brik R, Broza Y, Gershoni-Baruch R (2006) Henoch-Schonlein purpura: polymorphisms in thrombophilia genes. Pediatr Nephrol 21:1117–1121PubMedCrossRefGoogle Scholar
  23. 23.
    Emre S, Sirin A, Ergen A et al (2011) Methylenetetrahydrofolate reductase C677T polymorphism in patients with Henoch–Schönlein purpura. Pediatr Int 53:358–362PubMedCrossRefGoogle Scholar
  24. 24.
    He X, Lu H, Kang S et al (2010) MEFV E148Q polymorphism is associated with Henoch–Schönlein purpura in Chinese children. Pediatr Nephrol 25:2077–2082PubMedCrossRefGoogle Scholar
  25. 25.
    Jin DK, Kohsaka T, Koo JW, Ha IS, Cheong HI, Choi Y (1996) Complement 4 locus II gene deletion and DQA1*0301 gene: genetic risk factors for IgA nephropathy and Henoch–Schönlein nephritis. Nephron 73:390–395PubMedCrossRefGoogle Scholar
  26. 26.
    Liu D, Lu F, Zhai S et al (2010) Renin-angiotensin system gene polymorphisms in children with Henoch-Schonlein purpura in West China. J Renin Angiotensin Aldosterone Syst 11:248–255CrossRefGoogle Scholar
  27. 27.
    Liu ZH, Cheng ZH, Yu YS, Tang Z, Li LS (1997) Interleukin-1 receptor antagonist allele: is it a genetic link between Henoch–Schönlein nephritis and IgA nephropathy? Kidney Int 51:1938–1942PubMedCrossRefGoogle Scholar
  28. 28.
    Martin J, Paco L, Ruiz MP et al (2005) Inducible nitric oxide synthase polymorphism is associated with susceptibility to Henoch–Schönlein purpura in northwestern Spain. J Rheumatol 32:1081–1085PubMedGoogle Scholar
  29. 29.
    Orozco G, Miranda-Filloy JA, Martin J, Gonzalez-Gay MA (2007) Lack of association of a functional single nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with susceptibility to Henoch–Schönlein purpura. Clin Exp Rheumatol 25:750–753PubMedGoogle Scholar
  30. 30.
    Ozkaya O, Söylemezoğlu O, Gönen S et al (2006) Renin-angiotensin system gene polymorphisms: association with susceptibility to Henoch-Schonlein purpura and renal involvement. Clin Rheumatol 25:861–865PubMedCrossRefGoogle Scholar
  31. 31.
    Peru H, Soylemezoglu O, Gonen S et al (2008) HLA class 1 associations in Henoch-Schonlein purpura: increased and decreased frequencies. Clin Rheumatol 27:5–10PubMedCrossRefGoogle Scholar
  32. 32.
    Rueda B, Perez-Armengol C, Lopez-Lopez S, Garcia-Porrua C, Martín J, Gonzalez-Gay MA (2006) Association between functional haplotypes of vascular endothelial growth factor and renal complications in Henoch–Schönlein purpura. J Rheumatol 33:69–73PubMedGoogle Scholar
  33. 33.
    Soylemezoglu O, Peru H, Gonen S et al (2008) CTLA-4 +49 A/G genotype and HLA-DRB1 polymorphisms in Turkish patients with Henoch–Schönlein purpura. Pediatr Nephrol 23:1239–1244PubMedCrossRefGoogle Scholar
  34. 34.
    Soylu A, Kizildağ S, Kavukçu S et al (2010) TLR-2 Arg753Gln, TLR-4 Asp299Gly, and TLR-4 Thr399Ile polymorphisms in Henoch Schonlein purpura with and without renal involvement. Rheumatol Int 30:667–670PubMedCrossRefGoogle Scholar
  35. 35.
    Stefansson Thors V, Kolka R, Sigurdardottir SL, Edvardsson VO, Arason G, Haraldsson A (2005) Increased frequency of C4B*Q0 alleles in patients with Henoch–Schönlein purpura. Scand J Immunol 61:274–278PubMedCrossRefGoogle Scholar
  36. 36.
    Torres O, Palomino-Morales R, Miranda-Filloy JA, Vazquez-Rodriguez TR, Martin J, Gonzalez-Gay MA (2010) IL-18 gene polymorphisms in Henoch–Schönlein purpura. Clin Exp Rheumatol 28:114PubMedGoogle Scholar
  37. 37.
    Torres O, Palomino-Morales R, Miranda-Filloy JA, Vazquez-Rodriguez TR, Martin J, Gonzalez-Gay MA (2010) Lack of association between toll-like receptor 4 gene polymorphism and Henoch–Schönlein purpura. Clin Exp Rheumatol 28:110PubMedGoogle Scholar
  38. 38.
    Yang YH, Lai HJ, Kao CK, Lin YT, Chiang BL (2004) The association between transforming growth factor-beta gene promoter C-509T polymorphism and Chinese children with Henoch–Schönlein purpura. Pediatr Nephrol 19:972–975PubMedCrossRefGoogle Scholar
  39. 39.
    Yi Z, Fang X, Wu X et al (2006) Role of PAX2 gene polymorphisms in Henoch-Schonlein purpura nephritis. Nephrology (Carlton) 11:42–48CrossRefGoogle Scholar
  40. 40.
    Yilmaz A, Emre S, Agachan B et al (2009) Effect of paraoxonase 1 gene polymorphisms on clinical course of Henoch–Schönlein purpura. J Nephrol 22:726–732PubMedGoogle Scholar
  41. 41.
    Zeng HS, Xiong XY, Chen YY, Luo XP (2009) Gene polymorphism of vascular endothelial growth factor in children with Henoch-Schonlein purpura nephritis. Zhongguo Dang Dai Er Ke Za Zhi 11:417–421PubMedGoogle Scholar
  42. 42.
    Zhang Y, Xudong X, Du L et al (2007) Lack of association between NPHS2 gene polymorphisms and Henoch–Schönlein purpura nephritis. Arch Dermatol Res 299:151–155PubMedCrossRefGoogle Scholar
  43. 43.
    Zhou J, Tian X, Xu Q (2004) Angiotensin-converting enzyme gene insertion/deletion polymorphism in children with Henoch-Schonlein purpua nephritis. Huazhong Univ Sci Technolog Med Sci 24:158–161CrossRefGoogle Scholar
  44. 44.
    He X, Zhao P, Kang S, Ding Y, Luan J, Liu Z, Wu Y, Yin W (2012) C1GALT1 polymorphisms are associated with Henoch–Schönlein purpura nephritis. Pediatr Nephrol 27:1505–1509PubMedCrossRefGoogle Scholar
  45. 45.
    He X, Li Y, Kang S, Luan J, Wu Y, Liu Z, Yin W (2011) The CD18 AvaII polymorphic site not associated with Henoch–Schönlein purpura. Clin Exp Rheumatol 29(1 Suppl 64):S117–S120PubMedGoogle Scholar
  46. 46.
    Emre S, Sirin A, Ergen A, Bilge I, Sucu A, Yilmaz A, Isbir T (2011) Methylenetetrahydrofolate reductase C677T polymorphism in patients with Henoch–Schönlein purpura. Pediatr Int 53:358–362PubMedCrossRefGoogle Scholar
  47. 47.
    Yoshioka T, Xu YX, Yoshida H, Shiraga H, Muraki T, Ito K (1998) Deletion polymorphism of the angiotensin converting enzyme gene predicts persistent proteinuria in Henoch–Schönlein purpura nephritis. Arch Dis Child 79:394–399PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bayram C, Demircin G, Erdoğan O, Bülbül M, Caltik A, Akyüz SG (2011) Prevalence of MEFV gene mutations and their clinical correlations in Turkish children with Henoch–Schönlein purpura. Acta Paediatr 100(5):745–749PubMedCrossRefGoogle Scholar
  49. 49.
    Gershoni-Baruch R, Broza Y, Brik R (2003) Prevalence and significance of mutations in the familial Mediterranean fever gene in Henoch–Schönlein purpura. J Pediatr 143:658–661PubMedCrossRefGoogle Scholar
  50. 50.
    Ozçakar ZB, Yalçinkaya F, Cakar N et al (2008) MEFV mutations modify the clinical presentation of Henoch–Schönlein purpura. J Rheumatol 35:2427–2429PubMedCrossRefGoogle Scholar
  51. 51.
    Dogan CS, Akman S, Koyun M, Bilgen T, Comak E, Gokceoglu AU (2012) Prevalence and significance of the MEFV gene mutations in childhood Henoch–Schönlein purpura without FMF symptoms. Rheumatol Int [Epub ahead of print]Google Scholar
  52. 52.
    Burgner D, Davila S, Breunis WB et al (2009) A genome-wide association study identifies novel and functionally related susceptibility Loci for Kawasaki disease. PLoS Genet 5(1):e1000319PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Fei Y, Webb R, Cobb BL et al (2009) Identification of novel genetic susceptibility loci for Behcet’s disease using a genome-wide association study. Arthritis Res Ther 11:R66PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Plenge RM, Cotsapas C, Davies L et al (2007) Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 39:147–148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xuelian He
    • 1
  • Chunhua Yu
    • 1
  • Peiwei Zhao
    • 1
  • Yan Ding
    • 1
  • Xiaohui Liang
    • 3
  • Yulan Zhao
    • 2
  • Xin Yue
    • 1
  • Yanxiang Wu
    • 1
    Email author
  • Wei Yin
    • 1
  1. 1.Wuhan Children’s HospitalJiangan DistrictPeople’s Republic of China
  2. 2.Advanced Institute of NBIC Integrated Drug Discovery and DevelopmentEast China Normal UniversityShanghaiPeople’s Republic of China
  3. 3.School of Public HealthWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations