Rheumatology International

, Volume 32, Issue 11, pp 3331–3338

Infection and autoimmune disease

Review Article

Abstract

Most infectious agents, such as viruses, bacteria and parasites, can trigger autoimmunity via different mechanisms. The development of an autoimmune disorder after infection tends to occur in genetically susceptible individuals. Some parameters, such as genetic predisposition, feature of the infectious agent and sometimes protective effect of the infections, have a significant role in this process. These parameters and various pathogens that could lead to enhancement or exacerbation of autoimmune disease were examined in this review. Recent studies were reviewed from a microbiological perspective.

Keywords

Infection Autoimmune disease 

References

  1. 1.
    National Institutes of Health (2002) Autoimmune disease coordinating committee report 2002. The Institutes, Bethesda (MD)Google Scholar
  2. 2.
    Rose NR (2002) An immunology primer. In: Morton CC, Fagan T (eds) Proceedings from sex differences in immunology and autoimmunity, Society for Women’s Health Research, Boston, MA, 8 Nov 2001. Society for Women’s Health Research, Washington, pp 7–9Google Scholar
  3. 3.
    Rose NR (2002) Mechanisms of autoimmunity. Semin Liver Dis 22:387–394CrossRefPubMedGoogle Scholar
  4. 4.
    Kamradt T (2005) Can infection prevent or cure allergy and autoimmunity? Discov Med 5:283–287PubMedGoogle Scholar
  5. 5.
    Grossman C, Dovrish Z, Shoenfeld Y, Amital H (2011) Do infections facilitate the emergence of systemic sclerosis? Autoimmune Rev 10:244–247CrossRefGoogle Scholar
  6. 6.
    Grigoriadis N, Hadjigeorgiou GM (2006) Virus-mediated autoimmunity in multiple sclerosis. J Autoimmune Dis. doi:10.1186/1740-2557-3-1 PubMedGoogle Scholar
  7. 7.
    Francis L, Pearl A (2010) Infection in systemic lupus erythematosus: friend or foe? Int J Clin Rheumtol 5:59–74CrossRefPubMedGoogle Scholar
  8. 8.
    Olson JK, Ludovic Croxford J, Miller SD (2004) Innate and adaptive immune requirements for induction of autoimmune demyelinating disease by molecular mimicry. Mol Immunol 40:1103–1108CrossRefPubMedGoogle Scholar
  9. 9.
    Rifkin IR, Leadbetter EA, Busconi L, Viglianti G, Marshak-Rothstein A (2005) Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 204:27–42CrossRefPubMedGoogle Scholar
  10. 10.
    Rahman AH, Eisenberg RA (2006) The role of toll-like receptors in systemic lupus erythematosus. Semin Immunopathol 28:131–143CrossRefGoogle Scholar
  11. 11.
    Richez C, Blanco P, Rifkin I, Moreau JF, Schaeverbeke T (2011) Role for toll-like receptors in autoimmune disease: the example of systemic lupus erythematosus. Joint Bone Spine 78:124–130CrossRefPubMedGoogle Scholar
  12. 12.
    Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739CrossRefPubMedGoogle Scholar
  13. 13.
    Guiducci S, Distler O, Distler JHW, Matucci-Cerinic M (2008) Mechanisms of vascular damage in SSc-implications for vascular treatment strategies. Rheumatology 47:18–20CrossRefGoogle Scholar
  14. 14.
    Haskard DO (1995) Cell adhesion molecules in rheumatoid arthritis. Curr Opin Rheumatol 7:229–234CrossRefPubMedGoogle Scholar
  15. 15.
    Veale DJ, Maple C, Kirk G, McLaren M, Belch JJ (1998) Soluble cell adhesion molecules: P-selecting and ICAM-1, and disease activity in patients receiving sulphasalazine for active rheumatoid artritis. Scand J Rheumatol 27:296–299CrossRefPubMedGoogle Scholar
  16. 16.
    Ku IA, Imboden JB, Hsue PY, Ganz P (2009) Rheumatoid arthritis-A model of systemic inflammation driving atherosclerosis. Circ J 73:977–985CrossRefPubMedGoogle Scholar
  17. 17.
    Sgonc R, Gruschwitz MS, Dietrich H, Recheis H, Gershwin ME, Wick G (1996) Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Invest 98:785–792CrossRefPubMedGoogle Scholar
  18. 18.
    Samarkos M, Vaiopoulos G (2005) The role of infections in the pathogenesis of autoimmune diseases. Curr Drug Targets Inflamm Allergy 4:99–103CrossRefPubMedGoogle Scholar
  19. 19.
    Sundberg EJ, Deng L, Mariuzza RA (2007) TCR recognition of peptide/MHC class II complexes and superantigens. Semin Immunol 19:262–271CrossRefPubMedGoogle Scholar
  20. 20.
    Oliver JE, Silman AJ (2009) Why are women predisposed to autoimmune rheumatic diseases? Arthritis Res Ther. doi:10.1186/ar2825 Google Scholar
  21. 21.
    Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL (1999) Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood 93:2033–2037PubMedGoogle Scholar
  22. 22.
    Lambert NC, Pang JM, Yan Z, Erickson TD, Stevens AM, Furst DE, Nelson JL (2005) Male microchimerism in women with systemic sclerosis and healthy women who have never given birth to a son. Ann Rheum Dis 64:845–848CrossRefPubMedGoogle Scholar
  23. 23.
    Gammill HS, Nelson JL (2010) Naturally acquired microchimerism. Int J Dev Biol 54:531–543CrossRefPubMedGoogle Scholar
  24. 24.
    Khosrotehrani K, Mery L, Aractingi S, Bianchi DW, Johnson KL (2005) Absence of fetal cell microchimerism in cutaneus lesions of lupus erythematosus. Ann Rheum Dis 64:159–160CrossRefPubMedGoogle Scholar
  25. 25.
    Mosca M, Curcio M, Lapi S, Valentini G, D’angelo S, Rizzo G, Bombardieri S (2003) Correlations of Y chromosome microchimerism with disease activity in patients with SLE: analysis of preliminary data. Ann Rheum Dis 62:651–654CrossRefPubMedGoogle Scholar
  26. 26.
    Hovinga ICLK, Koopmans M, Baelde HJ, Vanderwal AM, Sijpkens YWJ, Deheer E, Bruijn JA, Bajema IM (2006) Chimerism occurs twice as often in lupus nephritis as in normal kidneys. Arthritis Rheum 54:2944–2950CrossRefGoogle Scholar
  27. 27.
    Miech RP (2010) The role of microchimerism in autoimmune disease. Int J Clin Exp Med 3:164–168PubMedGoogle Scholar
  28. 28.
    Doria A, Sarzi-Puttini P, Shoenfeld Y (2008) Infections, rheumatism and autoimmunity: the conflicting relationship between humans and their environment. Autoimmune Rev 8:1–4CrossRefGoogle Scholar
  29. 29.
    Sfriso P, Ghirardello A, Botsios C, Tonon M, Magherita Z, Bassi N, Bassetto F, Dorio A (2010) Infections and autoimmunity: the multifaced relationship. J Leukoc Biol 87:385–395CrossRefPubMedGoogle Scholar
  30. 30.
    Goddard GZ, Shoenfeld Y (2005) Infections and SLE. Autoimmunity 38:473–485CrossRefGoogle Scholar
  31. 31.
    Barzilai O, Sherer Y, Ram M, Izhaky D, Anaya JM, Shoenfeld Y (2007) Ebstein-Barr virus and cytomegalovirus in autoimmune diseases:are they truly notorious? A preliminary report. Ann N Y Acad Sci 1108:567–577CrossRefPubMedGoogle Scholar
  32. 32.
    Su BY, Su CY, Yu SF, Chen CJ (2007) Incidental discovery of high systemic lupus erythematosus disease activity associated with cytomegalovirus viral activity. Med Microbiol Immunol 196:165–170CrossRefPubMedGoogle Scholar
  33. 33.
    Toussirrot E (2008) Epstein Barr virus in autoimmune disease. Best Pract Res Clin Rheumatol 22:883–896CrossRefGoogle Scholar
  34. 34.
    James JA, Robertson JM (2012) Lupus and Epstein-Barr. Curr Opin Rheumatol. doi:10.1097/BOR.0b013e3283535801 PubMedGoogle Scholar
  35. 35.
    Esen BA, Yılmaz G, Uzun S, Ozdamar M, Aksozek A, Kamalı S, Turkoglu S, Gulş A, Ocal L, Aral O, Inanc M (2010) Serologic response to Epstein-Barr virus antigens in patients with systemic lupus erythematosus: a controlled study. Rheumatol Int. doi:10.1007/s00296-010-1573-4 PubMedGoogle Scholar
  36. 36.
    Zandman-Goddard G, Berkun Y, Barzilai O, Boaz M, Blank M, Ram M, Sherer Y, Anaya JM, Shoenfeld Y (2009) Exposure to Epstein-Barr virus infection is associated with mild systemic lupus erythematosus disease. Ann NY Acad Sci 1173:658–663CrossRefPubMedGoogle Scholar
  37. 37.
    Lunardi C, Tinazzi E, Bason C, Dolcino M, Corrocher R, Puccetti A (2008) Human parvovirus B19 infection and autoimmunity. Autoimmune Rev 8:116–120CrossRefGoogle Scholar
  38. 38.
    Magro CM, Nuovo GJ, Ferri C, Crowson AN, Giuggioli D, Sebastiani M (2004) Parvoviral infection of endothelial cells and stromal fibroblasts: a possible pathogenetic role in scleroderma. J Cutan Pathol 31:43–50CrossRefPubMedGoogle Scholar
  39. 39.
    Zakrzewska K, Corcioli F, Carlsen KM, Giuggioli D, Fanci R, Rinieri A, Ferri C, Azzi A (2009) Human parvovirus B19 (B19 V) infection in systemic sclerosis patients. Intervirology 52:279–282CrossRefPubMedGoogle Scholar
  40. 40.
    Ramos-Casals M, Muñoz S, Medina F, Jara LJ, Rosas J, Calvo-Alen J, Brito-Zerón P, Forns X, Sánchez-Tapias JM; HISPAMEC Study Group (2009) Systemic autoimmune diseases in patients with hepatitis C virus infection: characterization of 1020 cases (The HISPAMEC registry). J Rheumatol 36:1442–1448CrossRefGoogle Scholar
  41. 41.
    Menconi F, Hahsam A, Tomer Y (2011) Environmental triggers of thyroiditis: hepatitis C and interferon-α. J Endocrinol Invest 34:78–84PubMedGoogle Scholar
  42. 42.
    Antonelli A, Ferri C, Ferrari SM, Colaci M, Fallahi P (2008) Immunpathogenesis of HCV related endocrine manifestations in chronic hepatitis and mixed cryoglobulinemia. Autoimmune Rev 8:18–23CrossRefGoogle Scholar
  43. 43.
    De Vita S, Quartuccio L, Fabris M (2008) Hepatitis C virus infection, mixed cryoglobulinemia and BlyS upregulation: targeting the infectious trigger, the autoimmune response, or both? Autoimmune Rev 8:95–99CrossRefGoogle Scholar
  44. 44.
    Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP (2006) Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev 28:112–125CrossRefPubMedGoogle Scholar
  45. 45.
    Maya R, Gershwin ME, Shoenfeld Y (2008) Hepatitis B Virus (HBV) and autoimmune disease. Clinic Rev Allerg Immunol 34:85–102CrossRefGoogle Scholar
  46. 46.
    Chi ZC, Ma SZ (2003) Rheumatologic manifestations of hepatic diseases. Hepatobiliary Pancreat Dis Int 2:32–37PubMedGoogle Scholar
  47. 47.
    Sivadon-Tardy V, Orlikowski D, Porcher R, Sharshar T, Durand MC, Enouf V, Rozenberg F, Caudie C, Annane D, van der Werf S, Lebon P, Raphael JC, Gaillard JL, Gault E (2009) Guillain–Barre′ syndrome and influenza virus infection. Clin Infect Dis 1:48–56CrossRefGoogle Scholar
  48. 48.
    Chaari A, Bahloul M, Dammak H, Nourhene G, Rekik N, Hedi C, Chokri BH, Bouaziz M (2010) Guillain-Barré syndrome related to pandemic influenza A (H1N1) infection. Intensive Care Med 36:1275CrossRefPubMedGoogle Scholar
  49. 49.
    Landaverde JM, Danovaro-Holliday MC, Trumbo SP, Pacis-Tirso CL, Ruiz-Matus C (2010) Guillain-Barré syndrome in children aged < 15 years in Latin America and the Caribbean: baseline rates in the context of the influenza A (H1N1) pandemic. J Infect Dis 201:746–750CrossRefPubMedGoogle Scholar
  50. 50.
    Drenthen J, Yuki N, Meulstee J, Maathuis EM, van Doorn PA, Visser GH, Blok JH, Jacobs BC (2011) Guillain-Barré’ syndrome subtypes related to Campylobacter infection. J Neurol Neurosurg Psychiatry 82:300–305CrossRefPubMedGoogle Scholar
  51. 51.
    Usuki S, Taguchi K, Thompson SA, Chapman PB, Yu RK (2010) Novel anti-idiotype antibody therapy for lipooligosaccharide-induced experimental autoimmune neuritis: use relevant to Guillain-Barré syndrome. J Neurosci Res 88:1651–1663PubMedGoogle Scholar
  52. 52.
    Guilherme L, Kalil J (2010) Mechanisms leading autoimmune reactivity and disease. J Clin Immunol 30:17–23CrossRefPubMedGoogle Scholar
  53. 53.
    Mulvey MR, Doupe M, Prout M, Leong C, Hizon R, Grossberndt A, Klowak M, Gupta A, Melanson M, Gomori A, Esfahani F, Klassen L, Frost EE, Namaka M (2011) Staphylococcus aureus harbouring enterotoxin A as a possible risk factor for multiple sclerosis exacerbations. Mult Scler 17:397–403CrossRefPubMedGoogle Scholar
  54. 54.
    Martin E, Winn R, Nugent K (2011) Catastrophic antiphospholipid syndrome in a community-acquired methicillin-resistant Staphylococcus aureus infection: a review of pathogenesis with a case for molecular mimicry. Autoimmune Rev 10:181–188CrossRefGoogle Scholar
  55. 55.
    Laudien M, Gadola SD, Podschun R, Hedderich J, Paulsen J, Reinhold-Keller E, Csernok E, Ambrosch P, Hellmich B, Moosig F, Gross WL, Sahly H, Lamprecht P (2010) Nasal carriage of Staphylococcus aureus and endonasal activity in Wegeners granulomatosis as compared to rheumatoid arthritis and chronic rhinosinusitis with nasal polyps. Clin Exp Rheumatol 28(1 Suppl 57):51–55PubMedGoogle Scholar
  56. 56.
    Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW (1987) Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 139:3630–3636PubMedGoogle Scholar
  57. 57.
    Cacoub P, Renou C, Kerr G, Hüe S, Rosenthal E, Cohen P, Kaplanski G, Charlotte F, Thibault V, Ghillani P, Piette JC, Caillat-Zucman S (2001) Influence of HLA-DR phenotype on the risk of hepatitis C virus-associated mixed cryoglobulinemia. Arthritis Rheum 44:2118–2124CrossRefPubMedGoogle Scholar
  58. 58.
    Kudat H, Telci G, Sozen AB, Oguz F, Akkaya V, Ozcan M, Atilgan D, Carin M, Guven O (2006) The role of HLA molecules in susceptibility to chronic rheumatic heart disease. Int J Immunogenet 33:41–44CrossRefPubMedGoogle Scholar
  59. 59.
    Haines JL, Terwedow HA, Burgess K, Pericak-Vance MA, Rimmler JB, Martin ER, Oksenberg JR, Lincoln R, Zhang DY, Banatao DR, Gatto N, Goodkin DE, Hauser SL et al (1998) Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 7:1229–1234CrossRefPubMedGoogle Scholar
  60. 60.
    Graham RR, Ortmann W, Rodine P, Espe K, Langefeld C, Lange E, Williams A, Beck S, Kyogoku C, Moser K, Gaffney P, Gregersen PK, Criswell LA, Harley JB, Behrens TW (2007) Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE. Eur J Hum Genet 15:823–830CrossRefPubMedGoogle Scholar
  61. 61.
    van der Linden SM, Valkenburg HA, de Jongh BM, Cats A (1984) The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum 27:241–249CrossRefPubMedGoogle Scholar
  62. 62.
    Braun J, Sieper J (2010) Ankylosing spondylitis, other spondyloarthritides, and related conditions. In: Warrell DA, Cox TM, Firth JD (eds) Oxford textbook of medicine. Oxford University Press, Oxford, pp 3603–3616CrossRefGoogle Scholar
  63. 63.
    Stastny P (1978) Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med 298:869–871CrossRefPubMedGoogle Scholar
  64. 64.
    Kivity S, Agmon-Levin N, Blank M, Shoenfeld Y (2009) Infections and autoimmunity-friends or foes? Trends Immunol 30:409–414CrossRefPubMedGoogle Scholar
  65. 65.
    Rashid T, Ebringer A (2012) Autoimmunity in rheumatic diseases is induced by microbial infections via crossreactivity or molecular mimicry. Autoimmune Dis. doi:10.1155/2012/539282 PubMedGoogle Scholar
  66. 66.
    Ebringer A, Ptaszynska T, Corbett M (1985) Antibodies to Proteus in rheumatoid arthritis. Lancet 2:305–307CrossRefPubMedGoogle Scholar
  67. 67.
    Khalafpour S, Ebringer A (1987) Cross-reactivity between HLA-DR4 and Proteus mirabilis. Periodic Biol (Zagreb) 89(suppl. 1):203Google Scholar
  68. 68.
    Wilson C, Rashid T, Tiwana H, Beyan H, Hughes L, Bansal S, Ebringer A, Binder A (2003) Cytotoxicity responses to peptide antigens in rheumatoid arthritis and ankylosing spondylitis. J Rheumatol 30:972–978PubMedGoogle Scholar
  69. 69.
    Baines M, Ebringer A, Avakian H, Samuel D, James DCO (1990) The use of enzyme immunoassay (EIA) and radiobinding assay to investigate the cross-reactivity of Klebsiella antigens and HLAB27 in ankylosing spondylitis patients and healthy controls. Scand J Rheumatol 19:341–349CrossRefPubMedGoogle Scholar
  70. 70.
    Mäki-Ikola O, Penttinen M, Von Essen R, Gripenberg-Lerche C, Isomäki H, Granfors K (1997) IgM, IgG and IgA class enterobacterial antibodies in serum and synovial fluid in patients with ankylosing spondylitis and rheumatoid arthritis. Br J Rheumatol 36:1051–1053CrossRefPubMedGoogle Scholar
  71. 71.
    Cooke A (2009) Infection and autoimmunity. Blood Cells Mol Dis 42:105–107CrossRefPubMedGoogle Scholar
  72. 72.
    Gaisford W, Cooke A (2009) Can infections protect against autoimmunity? Curr Opin Rheumatol 21:391–396CrossRefPubMedGoogle Scholar
  73. 73.
    Zaccone P, Fehérvári Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, Cooke A (2003) Schistosoma mansoni antigens modulate the activity of the innate immuneresponse and prevent onset of type 1 diabetes. Eur J Immunol 33:1439–1449CrossRefPubMedGoogle Scholar
  74. 74.
    Tracy S, Drescher KM, Chapman NM, Kim KS, Carson SD, Pirruccello S, Lane PH, Romero JR, Leser JS (2002) Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVBmarkedly lowers diabetes incidence. J Virol 76:12097–12111CrossRefPubMedGoogle Scholar
  75. 75.
    Krause I, Anaya JM, Fraser A, Barzilai O, Ram M, Abad V, Arango A, García J, Shoenfeld Y (2009) Anti-infectious antibodies and autoimmune-associated autoantibodies inpatients with type I diabetes mellitus and their close family members. Ann N Y Acad Sci 1173:633–639CrossRefPubMedGoogle Scholar
  76. 76.
    Ram M, Anaya JM, Barzilai O, Izhaky D, Porat Katz BS, Blank M, Shoenfeld Y (2008) The putative protective rol of hepatitis B virus (HBV) infection from autoimmune disorders. Autoimmune Rev 7:621–625CrossRefGoogle Scholar
  77. 77.
    Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260CrossRefPubMedGoogle Scholar
  78. 78.
    Pugliatti M, Sotgiu S, Rosati G (2002) The worldwide prevalence of multiple sclerosis. Clin Neurol Neurosurg 104:182–191CrossRefPubMedGoogle Scholar
  79. 79.
    Gale EA (2002) The rise of childhood type 1 diabetes in the 20th century. Diabetes 51:3353–3361CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Microbiology and Clinical Microbiology DepartmentAtaturk Training and Research HospitalIzmirTurkey

Personalised recommendations