Rheumatology International

, Volume 33, Issue 2, pp 423–427 | Cite as

Effects of calcitonin on knee osteoarthritis and quality of life

  • Meltem Esenyel
  • Afitap İçağasıoğlu
  • Cem Zeki Esenyel
Original Article

Abstract

There has been a recent interest in calcitonin as a potential treatment for osteoarthritis, based on its metabolic activities in both bone turnover and cartilage. The aim of this study was to evaluate the effects of nasal form calcitonin on knee osteoarthritis and quality of life in women who receive calcitonin treatment for postmenopausal osteoporosis. Two hundred and twenty postmenopausal women, aged between 55 and 65 years with knee pain and knee osteoarthritis, graded II–III by using Kellgren–Lawrence radiographic scoring system, were included. Western Ontario and McMaster Universities (WOMAC) osteoarthritis index, the quality of life questionnaire of the European Foundation for Osteoporosis (QALEFFO-41) and visual analog scale were used for the algofunctional assessments. Need of rescue analgesic was recorded. Pain (P < 0.001), stiffness (P < 0.05), functional capability (P < 0.05) and total score of WOMAC (P < 0.05) revealed statistically significant improvements after 3 months of the treatment and remained consistent throughout 1 year of the treatment period. Participants experienced significant reductions in WOMAC perceptions of pain (−53 %), joint stiffness (−44 %) and limitations in physical function (−49 %) at the end of 1 year of calcitonin treatment. Need of rescue analgesic intake was reported to have decreased approximately by 60 % at the end of the 1-year treatment period. QUALEFFO_41 scores improved: 37.6 (baseline), 30.9 (3 months), 28.0 (6 months) and 24.4 (1 year). In conclusion, nasal calcitonin treatment provided dual action on osteoporosis and osteoarthritis with significant improvements in quality of life and algofunctional results in knee osteoarthritis.

Keywords

Osteoporosis Osteoarthritis Calcitonin treatment Rescue analgesic 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abramson SB, Honig S (2007) Antiresorptive agents and osteoarthritis: more than a bone to pick? Arthritis Rheum 56(8):2469–2473PubMedCrossRefGoogle Scholar
  2. 2.
    Krasnokutsky S, Samuels J, Abramson SB (2007) Osteoarthritis in 2007. Bull NYU Hosp Jt Dis 65(3):222–228PubMedGoogle Scholar
  3. 3.
    Felson DT, Neogi T (2004) Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum 50:341–344PubMedCrossRefGoogle Scholar
  4. 4.
    Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P et al (2008) Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthr Cartil 16:638–646PubMedCrossRefGoogle Scholar
  5. 5.
    Davis MA, Ettinger WH, Nuhaus JM (1991) Knee osteoarthritis and physical functioning: evidence from the NHANES 1 epidemiologic follow up study. J Rheumatol 18:591–598PubMedGoogle Scholar
  6. 6.
    Hopman-Rock M, Oddind E, Hofman A (1996) Physical and psychological disability in elderly subjects in relation to pain in the hip and/or knee. J Rheumatol 23:1037–1044PubMedGoogle Scholar
  7. 7.
    Zimmermann M (1989) Pain mechanisms and mediators in osteoarthritis. Semin Arthritis Rheum 18:51–56CrossRefGoogle Scholar
  8. 8.
    Chambers TJ, Moore A (1983) The sensitivity of isolated osteoclasts to morphological transformation by calcitonin. J Clin Endocrinol Metab 57:379–385CrossRefGoogle Scholar
  9. 9.
    Karsdal MA, Tanko LB, Riis BJ, Sondergard BC et al (2006) Calcitonin is involved in cartilage homeostasis: is calcitonin a treatment for OA? Osteoarthr Cartil 14:617–624PubMedCrossRefGoogle Scholar
  10. 10.
    Karsdal MA, Sondergaard BC, Arnold M, Chistiansen C (2007) Calcitonin affects both bone and cartilage: a dual action treatment for osteoarthritis? Ann NY Acad Sci 1117:181–195PubMedCrossRefGoogle Scholar
  11. 11.
    Sondergaard BC, Ostergaard S, Christiansen C, Karsdal MA (2007) The effect of oral calcitonin on cartilage turn overhand surface erosion in the ovariectomized rat model. Arthritis Rheum 2007:2674–2678CrossRefGoogle Scholar
  12. 12.
    El Hajjaji H, Williams JM, Devogelaer JP, Lenz ME, Thonar EJ, Manicourt DH (2004) Treatment with calcitonin prevents the net loss of collagen, hyaluronan and proteoglycan aggregates from cartilage in the early stages of canine experimental osteoarthritis. Osteoarthr Cartil 12:904–911PubMedCrossRefGoogle Scholar
  13. 13.
    Hannan MT, Felson DT, Anderson JJ, Naimark A, Kannel WB (1990) Estrogen use and radiographic osteoarthritis of the knee in women: the Framingham Osteoarthritis Study. Arthritis Rheum 33:525–532PubMedCrossRefGoogle Scholar
  14. 14.
    Tüzün EH, Eker L, Aytar A, Daşkapan A, Bayramoğlu M (2005) Acceptability, reliability, validity and responsiveness of the Turkish version of WOMAC osteoarthritis index. Osteoarthr Cartil 13(1):28–33PubMedCrossRefGoogle Scholar
  15. 15.
    Koçyigit H, Gülseren Ş, Erol A, Hizli N, Memis A (2003) The reliability and validity of the Turkish version of quality of life questionnaire of the European foundation for osteoporosis (QUALEFFO). Clin Rheumatol 22(1):18–23PubMedCrossRefGoogle Scholar
  16. 16.
    Abramson SB, Attur M, Yazici Y (2006) Prospects for disease modification in osteoarthritis. Nat Clin Pract Rheumatol 2:304–312PubMedCrossRefGoogle Scholar
  17. 17.
    Bingham CO, Buckland-Wright JC, Garnera P et al (2006) Risedronate decreases biomechanical markers of cartilage degradation but does not decrease symptoms or slow X-ray progression in patients with medial compartment osteoarthritis of the knee: results of 2 year multinational knee OA structural arthritis (KOSTAR) study. Arthritis Rheum 54:3494–3507PubMedCrossRefGoogle Scholar
  18. 18.
    Karsdal MA, Byrjalsen I, Bay-Jensen AC, Henriksen K, Riis BJ, Christiansen C (2010) Biochemical markers identify influences on bone and cartilage degradation in osteoarthritis—the effect of sex, Kellgren–Lawrence (KL) score, body mass index (BMI), oral salmon calcitonin (sCT) treatment and diurnal variation. BMC Musculoskelet Disord 11:125PubMedCrossRefGoogle Scholar
  19. 19.
    Sexton PM, Findlay DM, Martin TJ (1999) Calcitonin. Curr Med Chem 6:1067–1093PubMedGoogle Scholar
  20. 20.
    Manicourt DH, Devogelaer JP, Azria M, Silverman S (2005) Rationale for the potential use of calcitonin in osteoarthritis. J Muskuloskelet Neuronal Interact 5:285–293Google Scholar
  21. 21.
    Martin TJ, Haris GS, Melick RA, Fraser JR (1969) Effect of calcitonin on glycosaminoglycan synthesis by embryo calf bone cells in vitro. Experientia 25:375–376PubMedCrossRefGoogle Scholar
  22. 22.
    Baxter E, Fraser JR, Harris GS, Martin TJ, Melick RA (1968) Stimulation of glycosaminoglycan synthesis by thyrocalcitonin preparations. Med J Aust 1:216–217PubMedGoogle Scholar
  23. 23.
    Franchimont P, Basleer C, Henrotin Y, Gysen P, Basleer R (1989) Effects of human and salmon calcitonin on human articular chondrocytes cultivated in clusters. J Clin Endocrinol Metab 69:259–266PubMedCrossRefGoogle Scholar
  24. 24.
    Azria M (1989) The calcitonins (physiology and pharmacology). Karger, BaselGoogle Scholar
  25. 25.
    Lyritis GP, Trovas G (2002) Analgesic effects of calcitonin. Bone 30:715–745CrossRefGoogle Scholar
  26. 26.
    Plosker GL, McTavish D (1996) Intranasal salcatonin (salmon calcitonin). A review of its pharmacological properties and role in the management of postmenopausal osteoporosis. Drugs Aging 8:378–400PubMedCrossRefGoogle Scholar
  27. 27.
    Sondergaard BS, Olsen AK, Sumer EU, Quvist P, Bagger YZ, Tanko LB et al (2005) Calcitonin stimulates proteoglycan and collagen type I1 biosynthesis in articular cartilage ex vivo. Osteoarthr Cartil 13(Suppl A):142Google Scholar
  28. 28.
    Sondergaard BC, Wulf H, Henrikksen K, Schaller S, Oestergaard S, Qvist P et al (2006) Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression. Osteoarthr Cartil 14(8):759–768PubMedCrossRefGoogle Scholar
  29. 29.
    Helio MP, Peschard MJ, Cohen C, Richard M, Vignon E (1997) Calcitonin inhibits phospholipase A2 and collagenase activity of human osteoarthritic chondrocytes. Osteoarthr Cartil 5:121–128CrossRefGoogle Scholar
  30. 30.
    Hoegh-Andersen P, Tanko LB, Andersen TL, Lundberg CV, Mo JA, Heegaard AM et al (2004) Ovariectomized rats as model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther 6:169–180CrossRefGoogle Scholar
  31. 31.
    Tanko LB, Bagger YZ, Alexandersen P, Devogelaer JP, Reginster JY, Chick R et al (2004) Safety and efficacy of a novel salmon calcitonin (sCT) technology-based oral formulation in healthy postmenopausal women: acute and 3-month effects on biomarkers of bone turnover. J Bone Miner Res 19:1531–1538PubMedCrossRefGoogle Scholar
  32. 32.
    Bagger YZ, Tanko LB, Alexandersen P, Karsdal MA, Olson M, Mindeholm L et al (2005) Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: a new potential treatment of osteoarthritis. Bone 37:425–430PubMedCrossRefGoogle Scholar
  33. 33.
    Manicourt DH, Azria M, Mindeholm L, Thonar EJ, Devogelaer JP (2006) Oral salmon calcitonin reduces Lequesne’s algofunctional index scores and decreases urinary and serum levels of biomarkers of joint metabolism in knee osteoarthritis. Arthritis Rheum 54(10):3205–3211PubMedCrossRefGoogle Scholar
  34. 34.
    Manicourt DH, Azria M, Mindeholm L, Devogelaer JP (2005) Efficacy of calcitonin therapy in patients with knee osteoarthritis: a clinical and biochemical preliminary study. Osteoarthr Cartil 13:88Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Meltem Esenyel
    • 1
  • Afitap İçağasıoğlu
    • 1
  • Cem Zeki Esenyel
    • 2
  1. 1.Physical Medicine and Rehabilitation Department, Göztepe Training and Research HospitalMedeniyet UniversityIstanbulTurkey
  2. 2.Department of Orthopedics and TraumatologyOkmeydanı Training and Research HospitalIstanbulTurkey

Personalised recommendations