Rheumatology International

, Volume 31, Issue 7, pp 843–847 | Cite as

Metastatic lymph node 51 and fibroblast-like synoviocyte hyperproliferation in rheumatoid arthritis pathogenesis

Review

Abstract

One of the varied characteristic features of the pathogenesis of rheumatoid arthritis (RA) is synovial hyperplasia. Fibroblast-like synoviocytes (FLSs) play a key role in the development of sustained inflammation in arthritic joints. We have reported previously that metastatic lymph node 51 (MLN51) is involved in the proliferation of FLSs in the pathogenesis of RA. Interestingly, the overexpression of MLN51 was observed only in RA FLSs, but not in osteoarthritis FLSs, possibly expecting that MLN51 may be a RA-specific marker. Additionally, we found that granulocyte–macrophage colony-stimulating factor signaling activates mitogen-activated protein kinase, followed by the upregulation of MLN51 and FLICE-inhibitory protein, resulting in FLS hyperplasia in RA. Based on these studies, we could be firm that MLN51 is a key factor in FLS hyperplasia of RA patients.

Keywords

MLN51 Fibroblast-like synoviocyte Rheumatoid arthritis GM-CSF 

Notes

Conflict of interest

None.

References

  1. 1.
    Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916PubMedCrossRefGoogle Scholar
  2. 2.
    Houssiau FA (1995) Cytokines in rheumatoid arthritis. Clin Rheumatol 14(Suppl 2):10–13PubMedCrossRefGoogle Scholar
  3. 3.
    Saxne T, Palladino MA Jr, Heinegard D, Talal N, Wollheim FA (1988) Detection of tumor necrosis factor alpha but not tumor necrosis factor beta in rheumatoid arthritis synovial fluid and serum. Arthritis Rheum 31:1041–1045PubMedCrossRefGoogle Scholar
  4. 4.
    Chikanza IC, Kingsley G, Panayi GS (1995) Peripheral blood and synovial fluid monocyte expression of interleukin 1 alpha and 1 beta during active rheumatoid arthritis. J Rheumatol 22:600–606PubMedGoogle Scholar
  5. 5.
    Gitter BD, Labus JM, Lees SL, Scheetz ME (1989) Characteristics of human synovial fibroblast activation by IL-1 beta and TNF alpha. Immunology 66:196–200PubMedGoogle Scholar
  6. 6.
    Shingu M, Nagai Y, Isayama T, Naono T, Nobunaga M (1993) The effects of cytokines on metalloproteinase inhibitors (TIMP) and collagenase production by human chondrocytes and TIMP production by synovial cells and endothelial cells. Clin Exp Immunol 94:145–149PubMedCrossRefGoogle Scholar
  7. 7.
    Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, Genovese MC, Wasko MC, Moreland LW, Weaver AL, Markenson J, Finck BK (2000) A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 343:1586–1593PubMedCrossRefGoogle Scholar
  8. 8.
    Feldmann M (2001) Pathogenesis of arthritis: recent research progress. Nat Immunol 2:771–773PubMedCrossRefGoogle Scholar
  9. 9.
    Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, Smolen JS, Weisman M, Emery P, Feldmann M, Harriman GR, Maini RN (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N Engl J Med 343:1594–1602PubMedCrossRefGoogle Scholar
  10. 10.
    van Roon JA, van Roy JL, Gmelig-Meyling FH, Lafeber FP, Bijlsma JW (1996) Prevention and reversal of cartilage degradation in rheumatoid arthritis by interleukin-10 and interleukin-4. Arthritis Rheum 39:829–835PubMedCrossRefGoogle Scholar
  11. 11.
    Sugiyama E, Kuroda A, Taki H, Ikemoto M, Hori T, Yamashita N, Maruyama M, Kobayashi M (1995) Interleukin 10 cooperates with interleukin 4 to suppress inflammatory cytokine production by freshly prepared adherent rheumatoid synovial cells. J Rheumatol 22:2020–2026PubMedGoogle Scholar
  12. 12.
    Smith RS, Smith TJ, Blieden TM, Phipps RP (1997) Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol 151:317–322PubMedGoogle Scholar
  13. 13.
    Pap T, Muller-Ladner U, Gay RE, Gay S (2000) Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res 2:361–367PubMedCrossRefGoogle Scholar
  14. 14.
    Paleolog EM, Miotla JM (1998) Angiogenesis in arthritis: role in disease pathogenesis and as a potential therapeutic target. Angiogenesis 2:295–307PubMedCrossRefGoogle Scholar
  15. 15.
    Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshihara Y, Yamada H (2007) Matrix metalloproteinases and cartilage matrix degradation in rheumatoid arthritis. Clin Calcium 17:500–508PubMedGoogle Scholar
  17. 17.
    Obermajer N, Jevnikar Z, Doljak B, Kos J (2008) Role of cysteine cathepsins in matrix degradation and cell signalling. Connect Tissue Res 49:193–196PubMedCrossRefGoogle Scholar
  18. 18.
    Kramer I, Wibulswas A, Croft D, Genot E (2003) Rheumatoid arthritis: targeting the proliferative fibroblasts. Prog Cell Cycle Res 5:59–70PubMedGoogle Scholar
  19. 19.
    Degot S, Regnier CH, Wendling C, Chenard MP, Rio MC, Tomasetto C (2002) Metastatic Lymph Node 51, a novel nucleo-cytoplasmic protein overexpressed in breast cancer. Oncogene 21:4422–4434PubMedCrossRefGoogle Scholar
  20. 20.
    Jang J, Lim DS, Choi YE, Jeong Y, Yoo SA, Kim WU, Bae YS (2006) MLN51 and GM-CSF involvement in the proliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 8:R170PubMedCrossRefGoogle Scholar
  21. 21.
    Varis A, Wolf M, Monni O, Vakkari ML, Kokkola A, Moskaluk C, Frierson H Jr, Powell SM, Knuutila S, Kallioniemi A, El-Rifai W (2002) Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res 62:2625–2629PubMedGoogle Scholar
  22. 22.
    Degot S, Le Hir H, Alpy F, Kedinger V, Stoll I, Wendling C, Seraphin B, Rio MC, Tomasetto C (2004) Association of the breast cancer protein MLN51 with the exon junction complex via its speckle localizer and RNA binding module. J Biol Chem 279:33702–33715PubMedCrossRefGoogle Scholar
  23. 23.
    Tange TO, Shibuya T, Jurica MS, Moore MJ (2005) Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA 11:1869–1883PubMedCrossRefGoogle Scholar
  24. 24.
    Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205PubMedCrossRefGoogle Scholar
  25. 25.
    Wiegand HL, Lu S, Cullen BR (2003) Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci U S A 100:11327–11332PubMedCrossRefGoogle Scholar
  26. 26.
    Tomasetto C, Regnier C, Moog-Lutz C, Mattei MG, Chenard MP, Lidereau R, Basset P, Rio MC (1995) Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11–q21.3 region of chromosome 17. Genomics 28:367–376PubMedCrossRefGoogle Scholar
  27. 27.
    Ha JE, Choi YE, Jang J, Yoon CH, Kim HY, Bae YS (2008) FLIP and MAPK play crucial roles in the MLN51-mediated hyperproliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis. FEBS J 275:3546–3555PubMedCrossRefGoogle Scholar
  28. 28.
    Yamanishi Y, Firestein GS (2001) Pathogenesis of rheumatoid arthritis: the role of synoviocytes. Rheum Dis Clin North Am 27:355–371PubMedCrossRefGoogle Scholar
  29. 29.
    Ahn JH, Lee Y, Jeon C, Lee SJ, Lee BH, Choi KD, Bae YS (2002) Identification of the genes differentially expressed in human dendritic cell subsets by cDNA subtraction and microarray analysis. Blood 100:1742–1754PubMedGoogle Scholar
  30. 30.
    Goodall GJ, Bagley CJ, Vadas MA, Lopez AF (1993) A model for the interaction of the GM-CSF, IL-3 and IL-5 receptors with their ligands. Growth Factors 8:87–97PubMedCrossRefGoogle Scholar
  31. 31.
    Trapnell BC, Whitsett JA (2002) Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol 64:775–802PubMedCrossRefGoogle Scholar
  32. 32.
    Gearing DP, King JA, Gough NM, Nicola NA (1989) Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J 8:3667–3676PubMedGoogle Scholar
  33. 33.
    Hayashida K, Kitamura T, Gorman DM, Arai K, Yokota T, Miyajima A (1990) Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci U S A 87:9655–9659PubMedCrossRefGoogle Scholar
  34. 34.
    Quelle FW, Sato N, Witthuhn BA, Inhorn RC, Eder M, Miyajima A, Griffin JD, Ihle JN (1994) JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol 14:4335–4341PubMedGoogle Scholar
  35. 35.
    Matsuguchi T, Zhao Y, Lilly MB, Kraft AS (1997) The cytoplasmic domain of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha subunit is essential for both GM-CSF-mediated growth and differentiation. J Biol Chem 272:17450–17459PubMedCrossRefGoogle Scholar
  36. 36.
    Duronio V, Clark-Lewis I, Federsppiel B, Wieler JS, Schrader JW (1992) Tyrosine phosphorylation of receptor beta subunits and common substrates in response to interleukin-3 and granulocyte-macrophage colony-stimulating factor. J Biol Chem 267:21856–21863PubMedGoogle Scholar
  37. 37.
    Sakamaki K, Miyajima I, Kitamura T, Miyajima A (1992) Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J 11:3541–3549PubMedGoogle Scholar
  38. 38.
    Watanabe S, Itoh T, Arai K (1996) Roles of JAK kinases in human GM-CSF receptor signal transduction. J Allergy Clin Immunol 98:S183–S191PubMedCrossRefGoogle Scholar
  39. 39.
    Hackenmiller R, Kim J, Feldman RA, Simon MC (2000) Abnormal stat activation, hematopoietic homeostasis, and innate immunity in c-fes-/- mice. Immunity 13:397–407PubMedCrossRefGoogle Scholar
  40. 40.
    Inoue T, Hammaker D, Boyle DL, Firestein GS (2005) Regulation of p38 MAPK by MAPK kinases 3 and 6 in fibroblast-like synoviocytes. J Immunol 174:4301–4306PubMedGoogle Scholar
  41. 41.
    Schett G, Tohidast-Akrad M, Smolen JS, Schmid BJ, Steiner CW, Bitzan P, Zenz P, Redlich K, Xu Q, Steiner G (2000) Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 43:2501–2512PubMedCrossRefGoogle Scholar
  42. 42.
    Aupperle KR, Boyle DL, Hendrix M, Seftor EA, Zvaifler NJ, Barbosa M, Firestein GS (1998) Regulation of synoviocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am J Pathol 152:1091–1098PubMedGoogle Scholar
  43. 43.
    Lories RJ, Derese I, Ceuppens JL, Luyten FP (2003) Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-like synoviocyte apoptosis. Arthritis Rheum 48:2807–2818PubMedCrossRefGoogle Scholar
  44. 44.
    Palao G, Santiago B, Galindo M, Paya M, Ramirez JC, Pablos JL (2004) Down-regulation of FLIP sensitizes rheumatoid synovial fibroblasts to Fas-mediated apoptosis. Arthritis Rheum 50:2803–2810PubMedCrossRefGoogle Scholar
  45. 45.
    Safa AR, Day TW, Wu CH (2008) Cellular FLICE-like inhibitory protein (C-FLIP): a novel target for cancer therapy. Curr Cancer Drug Targets 8:37–46PubMedCrossRefGoogle Scholar
  46. 46.
    Kataoka T (2005) The caspase-8 modulator c-FLIP. Crit Rev Immunol 25:31–58PubMedCrossRefGoogle Scholar
  47. 47.
    Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J (2000) The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol 10:640–648PubMedCrossRefGoogle Scholar
  48. 48.
    Chaudhary PM, Eby MT, Jasmin A, Kumar A, Liu L, Hood L (2000) Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene 19:4451–4460PubMedCrossRefGoogle Scholar
  49. 49.
    Imamura R, Konaka K, Matsumoto N, Hasegawa M, Fukui M, Mukaida N, Kinoshita T, Suda T (2004) Fas ligand induces cell-autonomous NF-kappaB activation and interleukin-8 production by a mechanism distinct from that of tumor necrosis factor-alpha. J Biol Chem 279:46415–46423PubMedCrossRefGoogle Scholar
  50. 50.
    Miyazawa K, Mori A, Okudaira H (1998) Establishment and characterization of a novel human rheumatoid fibroblast-like synoviocyte line, MH7A, immortalized with SV40 T antigen. J Biochem 124:1153–1162PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Applied Bioscience, Laboratory for Immune Cell-based TherapyCHA UniversityBundang-gu, SungnamKorea
  2. 2.Department of Biological ScienceSungkyunkwan UniversitySuwonKorea

Personalised recommendations