Advertisement

Rheumatology International

, Volume 32, Issue 5, pp 1197–1208 | Cite as

Pattern of joint damage in persons with knee osteoarthritis and concomitant ACL tears

  • Verena Stein
  • Ling Li
  • Grace Lo
  • Ali Guermazi
  • Yuqing Zhang
  • C. Kent Kwoh
  • Charles B. Eaton
  • David J. HunterEmail author
Original Article

Abstract

Anterior cruciate ligament (ACL) tears are known to be a risk factor for incident knee osteoarthritis (OA). At the present time, it is unknown whether an incidental ACL tear in those with established knee OA alters the pattern of synovial joint damage. Therefore, our aim was to assess whether ACL tears in persons with knee OA are associated with specific patterns of cartilage loss, meniscal degeneration, and bone marrow lesion (BML) location. We included 160 participants from the progression subcohort of the Osteoarthritis Initiative (OAI) Study, an ongoing 4-year, multicenter study, focusing on knee OA. Regional cartilage morphometry measures including cartilage volume (mm3), denuded area, normalized cartilage volume, bone surface area, as well as location of meniscal pathology and BMLs in index knees on the same side were compared between those with and without ACL tears. Of the 160 subjects (51% women, age 62.1 (±9.9), BMI 30.3 (±4.7) kg/m2), 14.4% had an ACL tear. After adjusting for age, BMI and gender participants with ACL tears had significantly greater cartilage volume in the posterior lateral femur (P = 0.04) and the central medial tibia (0.001) compared to those without ACL tears. Normalized cartilage volume was not different between those with and without ACL tears. In addition, individuals with ACL tears had significantly larger bone surface areas in the medial tibia (P = 0,006), the central medial tibia (P = 0.008), the posterior lateral femur (P = 0.004), and the posterior medial femur (P = 0.04). Furthermore, participants with ACL tears showed significantly more meniscal derangement in the lateral posterior horn (P = 0.019) and significantly more BMLs in the lateral femur (P = 0.0025). We found clear evidence of predominant lateral tibiofemoral involvement, with OA-associated findings on MRI, including increased denuded area and bone surface area, BMLs, and meniscal derangement in knees of individuals with ACL tears compared to those without.

Keywords

Knee osteoarthritis Anterior cruciate ligament tear Cartilage loss Bone marrow lesions Meniscal pathology 

Notes

Acknowledgments

We would like to thank the participants and staff of the OAI. We would like to thank the Principal Investigators (Michael Nevitt, Kent Kwoh, Charles B. Eaton, Rebecca Jackson, Marc Hochberg, Joan Bathon), Co-Investigators, and staff of the Osteoarthritis Initiative. The OAI is a public–private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This manuscript has received the approval of the OAI Publications Committee based on a review of its scientific content and data interpretation. We would also like to acknowledge the following persons who contributed to this work: Piran Aliabadi (read the knee—X-ray films) and David Felson (chaired the X-ray adjudication sessions).

Conflict of interest

Nothing to declare. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

References

  1. 1.
    Prevalence of disabilities and associated health conditions among adults–United States (1999) MMWR Morb Mortal Wkly Rep 2001 50(7):120–125Google Scholar
  2. 2.
    Felson DT, McAlindon TE, Anderson JJ, Naimark A, Weissman BW, Aliabadi P et al (1997) Defining radiographic osteoarthritis for the whole knee. Osteoarthr Cartil 5(4):241–250PubMedCrossRefGoogle Scholar
  3. 3.
    Mackenzie R, Palmer CR, Lomas DJ, Dixon AK (1996) Magnetic resonance imaging of the knee: diagnostic performance studies. Clin Radiol 51(4):251–257PubMedCrossRefGoogle Scholar
  4. 4.
    Cotten A, Delfaut E, Demondion X, Lapegue F, Boukhelifa M, Boutry N et al (2000) MR imaging of the knee at 0.2 and 1.5 T: correlation with surgery. AJR Am J Roentgenol 174(4):1093–1097PubMedGoogle Scholar
  5. 5.
    Vincken PW, ter Braak BP, van Erkell AR, de Rooy TP, Mallens WM, Post W et al (2002) Effectiveness of MR imaging in selection of patients for arthroscopy of the knee. Radiology 223(3):739–746PubMedCrossRefGoogle Scholar
  6. 6.
    Eckstein F, Glaser C (2004) Measuring cartilage morphology with quantitative magnetic resonance imaging. Semin Musculoskelet Radiol 8(4):329–353PubMedCrossRefGoogle Scholar
  7. 7.
    Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D et al (2004) Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 12(3):177–190PubMedCrossRefGoogle Scholar
  8. 8.
    Felson DT, Anderson JJ, Naimark A, Kannel W, Meenan RF (1989) The prevalence of chondrocalcinosis in the elderly and its association with knee osteoarthritis: the Framingham study. J Rheumatol 16(9):1241–1245PubMedGoogle Scholar
  9. 9.
    Davis MA, Ettinger WH, Neuhaus JM, Cho SA, Hauck WW (1989) The association of knee injury and obesity with unilateral and bilateral osteoarthritis of the knee. Am J Epidemiol 130(2):278–288PubMedGoogle Scholar
  10. 10.
    Wilder FV, Hall BJ, Barrett JP Jr, Lemrow NB (2002) History of acute knee injury and osteoarthritis of the knee: a prospective epidemiological assessment. The clearwater osteoarthritis study. Osteoarthr Cartil 10(8):611–616PubMedCrossRefGoogle Scholar
  11. 11.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769PubMedCrossRefGoogle Scholar
  12. 12.
    Arendt EA, Agel J, Dick R (1999) Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train 34(2):86–92PubMedGoogle Scholar
  13. 13.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMedGoogle Scholar
  14. 14.
    Roos H, Adalberth T, Dahlberg L, Lohmander LS (1995) Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartil 3(4):261–267PubMedCrossRefGoogle Scholar
  15. 15.
    Myklebust R, Mayhew TM (1998) Further evidence of species variation in mechanisms of epithelial cell loss in mammalian small intestine: ultrastructural studies on the reindeer (Rangifer tarandus) and seal (Phoca groenlandica). Cell Tissue Res 291(3):513–523PubMedCrossRefGoogle Scholar
  16. 16.
    Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22(5):632–644PubMedCrossRefGoogle Scholar
  17. 17.
    Kannus P, Jarvinen M (1989) Posttraumatic anterior cruciate ligament insufficiency as a cause of osteoarthritis in a knee joint. Clin Rheumatol 8(2):251–260PubMedCrossRefGoogle Scholar
  18. 18.
    Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152PubMedCrossRefGoogle Scholar
  19. 19.
    Maletius W, Messner K (1999) Eighteen- to twenty-four-year follow-up after complete rupture of the anterior cruciate ligament. Am J Sports Med 27(6):711–717PubMedGoogle Scholar
  20. 20.
    von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63(3):269–273CrossRefGoogle Scholar
  21. 21.
    McDaniel WJ Jr, Dameron TB Jr (1983) The untreated anterior cruciate ligament rupture. Clin Orthop Relat Res 172:158–163PubMedGoogle Scholar
  22. 22.
    Clatworthy M, Amendola A (1999) The anterior cruciate ligament and arthritis. Clin Sports Med 18(1):173–198 viiPubMedCrossRefGoogle Scholar
  23. 23.
    Hill CL, Seo GS, Gale D, Totterman S, Gale ME, Felson DT (2005) Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum 52(3):794–799PubMedCrossRefGoogle Scholar
  24. 24.
    Maffulli N, Binfield PM, King JB (2003) Articular cartilage lesions in the symptomatic anterior cruciate ligament-deficient knee. Arthroscopy 19(7):685–690PubMedCrossRefGoogle Scholar
  25. 25.
    Costa-Paz M, Muscolo DL, Ayerza M, Makino A, Aponte-Tinao L (2001) Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy 17(5):445–449PubMedCrossRefGoogle Scholar
  26. 26.
    Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR (2005) Association between abnormal kinematics and degenerative change in knees of people with chronic anterior cruciate ligament deficiency: a magnetic resonance imaging study. Aust J Physiother 51(4):233–240PubMedCrossRefGoogle Scholar
  27. 27.
    Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR (2004) Comparison of kinematic analysis by mapping tibiofemoral contact with movement of the femoral condylar centres in healthy and anterior cruciate ligament injured knees. J Orthop Res 22(5):955–962PubMedCrossRefGoogle Scholar
  28. 28.
    Hunter DJ, Niu J, Zhang Y, Totterman S, Tamez J, Dabrowski C et al. (2009) Change in cartilage morphometry: a sample of the progression cohort of the osteoarthritis initiative. Ann Rheum Dis 68(3):349–356Google Scholar
  29. 29.
    Peterfy C, Li J, Zaim S, Duryea J, Lynch J, Miaux Y et al (2003) Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol 32(3):128–132PubMedCrossRefGoogle Scholar
  30. 30.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502PubMedCrossRefGoogle Scholar
  31. 31.
    Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston leeds osteoarthritis knee score). Ann Rheum Dis 67(2):206–211PubMedCrossRefGoogle Scholar
  32. 32.
    Frobell RB, Lohmander LS, Roos HP (2007) Acute rotational trauma to the knee: poor agreement between clinical assessment and magnetic resonance imaging findings. Scand J Med Sci Sports 17(2):109–114PubMedGoogle Scholar
  33. 33.
    Noyes FR, Bassett RW, Grood ES, Butler DL (1980) Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries. J Bone Joint Surg Am 62(5):687–695, 757Google Scholar
  34. 34.
    Indelicato PA, Bittar ES (1985) A perspective of lesions associated with ACL insufficiency of the knee. A review of 100 cases. Clin Orthop Relat Res 198:77–80PubMedGoogle Scholar
  35. 35.
    Escalas F, Curell R (1994) Occult posttraumatic bone injury. Knee Surg Sports Traumatol Arthrosc 2(3):147–149PubMedCrossRefGoogle Scholar
  36. 36.
    Even-Sapir E, Arbel R, Lerman H, Flusser G, Livshitz G, Halperin N (2002) Bone injury associated with anterior cruciate ligament and meniscal tears: assessment with bone single photon emission computed tomography. Invest Radiol 37(9):521–527PubMedCrossRefGoogle Scholar
  37. 37.
    Lahm A, Erggelet C, Steinwachs M, Reichelt A (1998) Articular and osseous lesions in recent ligament tears: arthroscopic changes compared with magnetic resonance imaging findings. Arthroscopy 14(6):597–604PubMedCrossRefGoogle Scholar
  38. 38.
    Swaerd P, Kostogiannis I, Neuman P, Boegard T, Roos H (2010) Differences in radiological characteristics between post-traumatic and non-traumatic knee osteoarthritis. Scand J Med Sci Sports 20(5):731–739Google Scholar
  39. 39.
    Tandogan RN, Taser O, Kayaalp A, Taskiran E, Pinar H, Alparslan B et al (2004) Analysis of meniscal and chondral lesions accompanying anterior cruciate ligament tears: relationship with age, time from injury, and level of sport. Knee Surg Sports Traumatol Arthrosc 12(4):262–270PubMedCrossRefGoogle Scholar
  40. 40.
    Scarvell JM, Smith PN, Refshauge KM, Galloway H, Woods K (2005) Comparison of kinematics in the healthy and ACL injured knee using MRI. J Biomech 38(2):255–262PubMedCrossRefGoogle Scholar
  41. 41.
    Nishimori M, Deie M, Adachi N, Kanaya A, Nakamae A, Motoyama M et al (2008) Articular cartilage injury of the posterior lateral tibial plateau associated with acute anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 16(3):270–274PubMedCrossRefGoogle Scholar
  42. 42.
    Cipolla M, Scala A, Gianni E, Puddu G (1995) Different patterns of meniscal tears in acute anterior cruciate ligament (ACL) ruptures and in chronic ACL-deficient knees. Classification, staging and timing of treatment. Knee Surg Sports Traumatol Arthrosc 3(3):130–134PubMedCrossRefGoogle Scholar
  43. 43.
    Nikolic DK (1998) Lateral meniscal tears and their evolution in acute injuries of the anterior cruciate ligament of the knee. Arthroscopic analysis. Knee Surg Sports Traumatol Arthrosc 6(1):26–30PubMedCrossRefGoogle Scholar
  44. 44.
    Smith JP III, Barrett GR (2001) Medial and lateral meniscal tear patterns in anterior cruciate ligament-deficient knees. A prospective analysis of 575 tears. Am J Sports Med 29(4):415–419PubMedGoogle Scholar
  45. 45.
    Smith GN, Mickler EA, Albrecht ME, Myers SL, Brandt KD (2002) Severity of medial meniscus damage in the canine knee after anterior cruciate ligament transection. Osteoarthr Cartil 10(4):321–326PubMedCrossRefGoogle Scholar
  46. 46.
    Fowler PJ (1994) Bone injuries associated with anterior cruciate ligament disruption. Arthroscopy 10(4):453–460PubMedCrossRefGoogle Scholar
  47. 47.
    Rosen MA, Jackson DW, Berger PE (1991) Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthroscopy 7(1):45–51PubMedCrossRefGoogle Scholar
  48. 48.
    Speer KP, Spritzer CE, Bassett FH III, Feagin JA Jr, Garrett WE Jr (1992) Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 20(4):382–389PubMedCrossRefGoogle Scholar
  49. 49.
    Spindler KP, Schils JP, Bergfeld JA, Andrish JT, Weiker GG, Anderson TE et al (1993) Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am J Sports Med 21(4):551–557PubMedCrossRefGoogle Scholar
  50. 50.
    Stein LN, Fischer DA, Fritts HM, Quick DC (1995) Occult osseous lesions associated with anterior cruciate ligament tears. Clin Orthop Relat Res 313:187–193PubMedGoogle Scholar
  51. 51.
    Johnson DL, Urban WP Jr, Caborn DN, Vanarthos WJ, Carlson CS (1998) Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med 26(3):409–414PubMedGoogle Scholar
  52. 52.
    Murphy BJ, Smith RL, Uribe JW, Janecki CJ, Hechtman KS, Mangasarian RA (1992) Bone signal abnormalities in the posterolateral tibia and lateral femoral condyle in complete tears of the anterior cruciate ligament: a specific sign? Radiology 182(1):221–224PubMedGoogle Scholar
  53. 53.
    Viskontas DG, Giuffre BM, Duggal N, Graham D, Parker D, Coolican M (2008) Bone bruises associated with ACL rupture: correlation with injury mechanism. Am J Sports Med 36(5):927–933PubMedCrossRefGoogle Scholar
  54. 54.
    Segawa H, Omori G, Koga Y (2001) Long-term results of non-operative treatment of anterior cruciate ligament injury. Knee 8(1):5–11PubMedCrossRefGoogle Scholar
  55. 55.
    Gillquist J, Messner K (1999) Anterior cruciate ligament reconstruction and the long-term incidence of gonarthrosis. Sports Med 27(3):143–156PubMedCrossRefGoogle Scholar
  56. 56.
    Myklebust G, Holm I, Maehlum S, Engebretsen L, Bahr R (2003) Clinical, functional, and radiologic outcome in team handball players 6 to 11 years after anterior cruciate ligament injury: a follow-up study. Am J Sports Med 31(6):981–989PubMedGoogle Scholar
  57. 57.
    Jones HP, Appleyard RC, Mahajan S, Murrell GA (2003) Meniscal and chondral loss in the anterior cruciate ligament injured knee. Sports Med 33(14):1075–1089PubMedCrossRefGoogle Scholar
  58. 58.
    Amin S, Guermazi A, Lavalley MP, Niu J, Clancy M, Hunter DJ et al (2008) Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthr Cartil 16(8):897–902PubMedCrossRefGoogle Scholar
  59. 59.
    Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N et al (2003) Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 226(2):373–381PubMedCrossRefGoogle Scholar
  60. 60.
    Chan WP, Lang P, Stevens MP, Sack K, Majumdar S, Stoller DW et al (1991) Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 157(4):799–806PubMedGoogle Scholar
  61. 61.
    Lee JK, Yao L, Phelps CT, Wirth CR, Czajka J, Lozman J (1988) Anterior cruciate ligament tears: MR imaging compared with arthroscopy and clinical tests. Radiology 166(3):861–864PubMedGoogle Scholar
  62. 62.
    Rose NE, Gold SM (1996) A comparison of accuracy between clinical examination and magnetic resonance imaging in the diagnosis of meniscal and anterior cruciate ligament tears. Arthroscopy 12(4):398–405PubMedCrossRefGoogle Scholar
  63. 63.
    Glashow JL, Katz R, Schneider M, Scott WN (1989) Double-blind assessment of the value of magnetic resonance imaging in the diagnosis of anterior cruciate and meniscal lesions. J Bone Joint Surg Am 71(1):113–119PubMedGoogle Scholar
  64. 64.
    Polly DW Jr, Callaghan JJ, Sikes RA, McCabe JM, McMahon K, Savory CG (1988) The accuracy of selective magnetic resonance imaging compared with the findings of arthroscopy of the knee. J Bone Joint Surg Am 70(2):192–198PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Verena Stein
    • 1
  • Ling Li
    • 1
  • Grace Lo
    • 2
  • Ali Guermazi
    • 3
  • Yuqing Zhang
    • 3
  • C. Kent Kwoh
    • 4
  • Charles B. Eaton
    • 5
  • David J. Hunter
    • 1
    • 6
    Email author
  1. 1.Division of ResearchNew England Baptist HospitalBostonUSA
  2. 2.Division of RheumatologyTufts University School of MedicineBostonUSA
  3. 3.Boston University School of Medicine at Boston Medical CenterBostonUSA
  4. 4.University of Pittsburgh and Pittsburgh VA Healthcare SystemPittsburghUSA
  5. 5.Warren Alpert Medical School of Brown UniversityProvidenceUSA
  6. 6.Northern Clinical SchoolUniversity of SydneySydneyAustralia

Personalised recommendations