Rheumatology International

, Volume 32, Issue 3, pp 743–748

Causes of DMARD withdrawal following ADR within 6 months of initiation among Indian rheumatoid arthritis patients

  • Niti Mittal
  • Aman Sharma
  • Vinu Jose
  • Rakesh Mittal
  • Ajay Wanchu
  • Pradeep Bambery
Original Article
  • 165 Downloads

Abstract

The present study was conducted in Indian rheumatoid arthritis (RA) patients prescribed disease-modifying anti-rheumatic drugs (DMARDs) to determine the incidence and type of adverse drug reactions (ADRs) leading to their withdrawal in the initial 6 months of therapy. This was considered important as pharmacogenetic variations in the pattern of RA in different populations and genetic differences in efficacy and safety to drugs demand separate studies to be conducted in different populations. Hospital records were used to identify 1,000 consecutive patients with RA fulfilling the American College of Rheumatology criteria and having at least 6-month follow-up. Age, gender, duration of arthritis, drug usage and ADR-related drug withdrawal were recorded from the charts. Most of the patients were put on single DMARD. Combined use of DMARD was less frequent and non-use of DMARD was common; however, disease control was good. The commonest DMARD used in our hospital was hydroxychloroquine 444 (44%) and the commonest combination used was methotrexate with hydroxychloroquine by 55 (6%). Sulphasalazine use showed preference to young and males. Supportive drugs used were NSAIDs by 883 (88%), corticosteroids by 646 (65%), paracetamol by 594 (59%) and amitriptyline by 88 (9%). Incidence of ADR-related DMARD withdrawal was maximum with leflunomide 2/15 (13.33%) followed by methotrexate 9/116 (7.76%), sulphasalazine 6/185 (3.24%), chloroquine 3/131 (2.29%) and hydroxychloroquine 8/444 (1.8%). Severity and symptomatology of disease, genetic pattern of patients, financial status, previous experience of the clinicians and patients, availability of drugs, patient expectations and compliance were the main factors that lead to a difference in pattern of therapy in our patients compared to other population.

Keywords

Rheumatoid arthritis Disease-modifying anti-rheumatic drugs Adverse drug reactions Withdrawal 

References

  1. 1.
    Malaviya AN, Kapoor SK, Singh RR et al (1993) Prevalence of rheumatoid arthritis in the adult Indian population. Rheumatol Int 13:131–134PubMedCrossRefGoogle Scholar
  2. 2.
    Bedi GS, Gupta N, Handa R et al (2005) Quality of life in Indian patients with rheumatoid arthritis. Qual Life Res 14:1953–1958PubMedCrossRefGoogle Scholar
  3. 3.
    Aggarwal A, Chandran S, Misra R (2006) Physical, psychosocial and economic impact of rheumatoid arthritis: a pilot study of patients seen at a tertiary care referral centre. Natl Med J India 19:187–191PubMedGoogle Scholar
  4. 4.
    Gabriel SE, Crowson CS, Kremers HM et al (2003) Survival in rheumatoid arthritis: a population-based analysis of trends over 40 years. Arthritis Rheum 48:54–58PubMedCrossRefGoogle Scholar
  5. 5.
    Chakravarty K, McDonald H, Pullar T et al (2008) BSR & BHPR guideline for disease-modifying anti-rheumatic drug (DMARD) therapy in consultation with the British Association of Dermatologists. Rheumatology (Oxford) 47:924–925Google Scholar
  6. 6.
    Nell VPK, Machold KP, Eberl G et al (2004) Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology 43:906–914PubMedCrossRefGoogle Scholar
  7. 7.
    Luqmani R, Hennell S, Estrach C et al (2006) British society for rheumatology and british health professionals in rheumatology guideline for the management of rheumatoid arthritis (the first two years). Rheumatology (Oxford) 45:1167–1169Google Scholar
  8. 8.
    Choy EHS, Smith C, Dore CJ et al (2005) A meta-analysis of the efficacy and toxicity of combining disease-modifying anti-rheumatic drugs in rheumatoid arthritis based on patient withdrawal. Rheumatology 44:1414–1421PubMedCrossRefGoogle Scholar
  9. 9.
    Handa R (2004) Management of rheumatoid arthritis. Natl Med J India 17:143–151PubMedGoogle Scholar
  10. 10.
    American College of Rheumatology Ad hoc Committee on Clinical Guidelines (1996) Guidelines for the management of rheumatoid arthritis. Arthritis Rheum 39:713–722CrossRefGoogle Scholar
  11. 11.
    American College of Rheumatology Ad hoc Committee on Clinical Guidelines (1996) Guidelines for monitoring drug therapy in rheumatoid arthritis. Arthritis Rheum 39:723–731CrossRefGoogle Scholar
  12. 12.
    American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines (2002) Guidelines for the management of rheumatoid arthritis. Arthritis Rheum 46:328–346CrossRefGoogle Scholar
  13. 13.
    Joshi VR (2002) Indian guidelines for the management of rheumatoid arthritis. J Assoc Physicians India 50:1207–1218Google Scholar
  14. 14.
    Van der Heijden JW, Dijkmans BA, Scheper RJ et al (2007) Drug insight: resistance to methotrexate and other disease-modifying antirheumatic drugs—from bench to bedside. Nat Clin Pract Rheumatol 3:26–34PubMedCrossRefGoogle Scholar
  15. 15.
    Bingham S, Emery P (2000) Resistant rheumatoid arthritis clinics—a necessary development? Rheumatology (Oxford) 39:2–5CrossRefGoogle Scholar
  16. 16.
    Griffiths B, Situnayake RD, Clark B et al (2000) Racial origin and its effect on disease expression and HLA-DRB1 types in patients with rheumatoid arthritis: a matched cross-sectional study. Rheumatology (Oxford) 39:857–864CrossRefGoogle Scholar
  17. 17.
    Bruce N, Cronstein MD (2006) Pharmacogenetics in the rheumatic diseases. Bull NYU Hosp Jt Dis 64:16–19Google Scholar
  18. 18.
    Taniguchi A, Urano W, Tanaka E et al (2007) Pharmacogenomics of antirheumatic drugs and personalized medicine for rheumatoid arthritis. Nippon Rinsho 65:371–379PubMedGoogle Scholar
  19. 19.
    Ranganathan P (2005) Pharmacogenetics of therapies in rheumatoid arthritis. Drugs Today (Barc) 41:799–814CrossRefGoogle Scholar
  20. 20.
    Tanaka E, Taniguchi A, Urano W et al (2004) Pharmacogenetics of disease-modifying anti-rheumatic drugs. Best Pract Res Clin Rheumatol 18:233–247PubMedCrossRefGoogle Scholar
  21. 21.
    Taniguchi A, Urano W, Tanaka E et al (2002) Pharmacogenetics of disease modifying anti-rheumatic drugs. Nippon Rinsho 60:2339–2344PubMedGoogle Scholar
  22. 22.
    Maetzel A, Wong A, Strand V et al (2000) Meta-analysis of treatment termination rates among rheumatoid arthritis patients receiving disease-modifying anti-rheumatic drugs. Rheumatology (Oxford) 39:975–981CrossRefGoogle Scholar
  23. 23.
    Arnett FC, Edworthy SM, Bloch DA et al (1988) The American rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324PubMedCrossRefGoogle Scholar
  24. 24.
    Maddison P, Kiely P, Kirkham B et al (2005) Leflunomide in rheumatoid arthritis: recommendations through a process of consensus. Rheumatology 44:280–286PubMedCrossRefGoogle Scholar
  25. 25.
    Pavelka K, Forejtová Š, Pavelková A et al (2002) Analysis of the reasons for DMARD therapy discontinuation in patients with rheumatoid arthritis in the Czech and Slovak Republics. Clin Rheumatol 21:220–226PubMedCrossRefGoogle Scholar
  26. 26.
    Nagashima M, Matsuoka T, Saitoh K et al (2006) Treatment continuation rate in relation to efficacy and toxicity in long-term therapy with low-dose methotrexate, sulfasalazine, and bucillamine in 1,358 Japanese patients with rheumatoid arthritis. Clin Exp Rheumatol 24:260–267PubMedGoogle Scholar
  27. 27.
    Hoekstra M, van Ede AE, Haagsma CJ et al (2003) Factors associated with toxicity, final dose, and efficacy of methotrexate in patients with rheumatoid arthritis. Ann Rheum Dis 62:423–426PubMedCrossRefGoogle Scholar
  28. 28.
    van Ede E, Laan RFJM, Blom HJ et al (2002) Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatology 41:658–665PubMedCrossRefGoogle Scholar
  29. 29.
    van Ede AE, Laan RF, Rood MJ et al (2001) Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: A forty-eight-week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 44:1515–1524PubMedCrossRefGoogle Scholar
  30. 30.
    Joyce DA, Will RK, Hoffman DM et al (1991) Exacerbation of rheumatoid arthritis in patients treated with methotrexate after administration of folinic acid. Ann Rheum Dis 50:913–914PubMedCrossRefGoogle Scholar
  31. 31.
    Pawlik A, Czerny B, Dabrowska-Zamojcin E et al (2005) The influence of IL-6 polymorphism on efficacy of treatment of rheumatoid arthritis patients with methotrexate and prednisone. Pol Arch Med Wewn 114:843–847PubMedGoogle Scholar
  32. 32.
    Wessels JA, Kooloos WM, De Jonge R et al (2006) Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum 54:2830–2839PubMedCrossRefGoogle Scholar
  33. 33.
    Dervieux T, Furst D, Lein DO et al (2005) Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann Rheum Dis 64:1180–1185PubMedCrossRefGoogle Scholar
  34. 34.
    Van Ede AE, Laan RF, Blom HJ et al (2001) The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum 44:2525–2530PubMedCrossRefGoogle Scholar
  35. 35.
    Hughes LB, Beasley TM, Patel H et al (2006) Racial or ethnic differences in allele frequencies of single-nucleotide polymorphisms in the methylenetetrahydrofolate reductase gene and their influence on response to methotrexate in rheumatoid arthritis. Ann Rheum Dis 65:1213–1218PubMedCrossRefGoogle Scholar
  36. 36.
    Weisman MH, Furst DE, Park GS et al (2006) Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum 54:607–612PubMedCrossRefGoogle Scholar
  37. 37.
    Krajinovic M, Moghrabi A (2004) Pharmacogenetics of methotrexate. Pharmacogenomics 5:819–834PubMedCrossRefGoogle Scholar
  38. 38.
    Ranganathan P, Eisen S, Yokoyama WM et al (2003) Will pharmacogenetics allow better prediction of methotrexate toxicity and efficacy in patients with rheumatoid arthritis? Ann Rheum Dis 62:4–9PubMedCrossRefGoogle Scholar
  39. 39.
    Kremer JM (2006) Methotrexate pharmacogenomics. Ann Rheum Dis 65:1213–1218CrossRefGoogle Scholar
  40. 40.
    Suarez-Almazor ME, Belseck E, Shea BJ et al (2000) Sulfasalazine for treating rheumatoid arthritis (review). Cochrane Database Syst Rev 2:CD000958PubMedGoogle Scholar
  41. 41.
    Wadelius M, Stjernberg E, Wiholm BE et al (2000) Polymorphisms of NAT2 in relation to sulphasalazine-induced agranulocytosis. Pharmacogenetics 10:35–41PubMedCrossRefGoogle Scholar
  42. 42.
    Tanaka E, Taniguchi A, Urano W et al (2002) Adverse effects of sulfasalazine in patients with rheumatoid arthritis are associated with diplotype configuration at the N-acetyltransferase 2 gene. J Rheumatol 29:2492–2499PubMedGoogle Scholar
  43. 43.
    Kitas GD, Farr M, Waterhouse L et al (1992) Influence of acetylator status on sulphasalazine efficacy and toxicity in patients with rheumatoid arthritis. Scand J Rheumatol 21:220–225PubMedCrossRefGoogle Scholar
  44. 44.
    Bax DE, Greaves MS, Amos RS (1986) Sulphasalazine for rheumatoid arthritis: relationship between dose, acetylator phenotype and response to treatment. Br J Rheumatol 25:282–284PubMedCrossRefGoogle Scholar
  45. 45.
    Pullar T, Hunter JA, Capell HA (1985) Effect of acetylator phenotype on efficacy and toxicity of sulphasalazine in rheumatoid arthritis. Ann Rheum Dis 44:831–837PubMedCrossRefGoogle Scholar
  46. 46.
    Kumagai S, Komada F, Kita T et al (2004) N-acetyltransferase 2 genotype-related efficacy of sulfasalazine in patients with rheumatoid arthritis. Pharm Res 21:324–329PubMedCrossRefGoogle Scholar
  47. 47.
    Teshima D, Hino B, Makino K et al (2003) Sulphasalazine-induced leucopenia in a patient with renal dysfunction. J Clin Pharm Ther 28:239–242PubMedCrossRefGoogle Scholar
  48. 48.
    van der Heijden J, de Jong MC, Dijkmans BAC et al (2004) Acquired resistance of human T cells to sulfasalazine: stability of the resistant phenotype and sensitivity to nonrelated DMARDs. Ann Rheum Dis 63:131–137PubMedCrossRefGoogle Scholar
  49. 49.
    Mohanty D, Mukherjee MB, Colah RB (2004) Glucose-6-phosphate dehydrogenase deficiency in India. Indian J Pediatr 71:525–529PubMedCrossRefGoogle Scholar
  50. 50.
    Mavrikakis M, Papazoglou S, Sfikakis PP et al (1996) Retinal toxicity in long term hydroxychloroquine treatment. Ann Rheum Dis 55:187–189PubMedCrossRefGoogle Scholar
  51. 51.
    Mavrikakis I, Sfikakis PP, Mavrikakis E et al (2003) The incidence of irreversible retinal toxicity in patients treated with hydroxychloroquine: a reappraisal. Ophthalmology 110:1321–1326PubMedCrossRefGoogle Scholar
  52. 52.
    Osiri M, Shea B, Robinson V et al (2003) Leflunomide for treating rheumatoid arthritis. Cochrane Database Syst Rev 1:CD002047PubMedGoogle Scholar
  53. 53.
    Laivoranta-Nyman S, Mottonen T, Hannonen P et al (2006) Association of tumour necrosis factor a, b and c microsatellite polymorphisms with clinical disease activity and induction of remission in early rheumatoid arthritis. Clin Exp Rheumatol 24:636–642PubMedGoogle Scholar
  54. 54.
    O’Dell JR, Nepom BS, Haire C et al (1998) HLA-DRB1 typing in rheumatoid arthritis: predicting response to specific treatments. Ann Rheum Dis 57:209–213PubMedCrossRefGoogle Scholar
  55. 55.
    Kuuliala K, Orpana A, Leirisalo-Repo M et al (2006) Polymorphism at position +896 of the toll-like receptor 4 gene interferes with rapid response to treatment in rheumatoid arthritis. Ann Rheum Dis 65:1241–1243PubMedCrossRefGoogle Scholar
  56. 56.
    Gotzsche PC, Johansen HK (2004) Short-term low-dose corticosteroids vs placebo and nonsteroidal antiinflammatory drugs in rheumatoid arthritis. Cochrane Database Syst Rev 3:CD000189PubMedGoogle Scholar
  57. 57.
    Saag KG, Criswell LA, Sems KM, Nettleman MD, Kolluri S (1996) Low-dose corticosteroids in rheumatoid arthritis. A meta-analysis of their moderate-term effectiveness. Arthritis Rheum 39:1818–1825PubMedCrossRefGoogle Scholar
  58. 58.
    Seideman P (1993) Additive effect of combined naproxen and paracetamol in rheumatoid arthritis. Br J Rheumatol 32:1077–1082PubMedCrossRefGoogle Scholar
  59. 59.
    Seideman P (1993) Paracetamol in rheumatoid arthritis. Agents Actions Suppl 44:7–12PubMedGoogle Scholar
  60. 60.
    Frank RG, Kashani JH, Parker JC et al (1988) Antidepressant analgesia in rheumatoid arthritis. J Rheumatol 15:1632–1638PubMedGoogle Scholar
  61. 61.
    Saarto T, Wiffen PJ (2005) Antidepressants for neuropathic pain. Cochrane Database Syst Rev 3:CD005454PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Niti Mittal
    • 1
  • Aman Sharma
    • 2
  • Vinu Jose
    • 1
  • Rakesh Mittal
    • 4
  • Ajay Wanchu
    • 3
  • Pradeep Bambery
    • 3
  1. 1.Department of PharmacologyPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
  2. 2.Department of Internal Medicine, Nehru Hospital, F Block, 4th FloorPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
  3. 3.Department of Internal MedicinePostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
  4. 4.Department of PharmacologyAdesh Institute of Medical Sciences & Research (AIMSR)BathindaIndia

Personalised recommendations