Rheumatology International

, Volume 32, Issue 2, pp 307–313 | Cite as

MicroRNA array analysis of microRNAs related to systemic scleroderma

  • Haitao Li
  • Rongya YangEmail author
  • Xin Fan
  • Tingmin Gu
  • Zhili Zhao
  • Dongqing Chang
  • Wenling Wang
  • Congmin Wang
Original Article


MicroRNAs are short, 18- to 25-nt sequences of noncoding, single-stranded RNA that function as regulatory molecules and participate in a series of vital processes including early development, cell proliferation, cell differentiation, apoptosis, substance metabolism and the pathogenesis of human diseases. This study compared the microRNA profiles of patients with systemic scleroderma (SSc) and healthy control individuals to investigate the pathogenesis of SSc. Skin tissue was isolated from three patients with SSc and three healthy controls. miRNA microarray chip analysis identified 24 miRNAs that were differentially expressed in patients with SSc and 6 microRNAs that may be correlated with the pathogenesis of SSc. The results of the microarray analysis were confirmed using real-time PCR. This work suggests that miRNAs may be potential diagnosis biomarkers and are likely to be involved in the pathogenesis of SSc.


Human SSc Microarray MicroRNA hsa-miR-206 



The authors thank the patients and healthy volunteers who participated in this study and the workers of Dermatology and Venereology Department, Beijing Military Command General Hospital of PLA, who helped with this research.

Conflict of interest

The authors have declared that no conflict of interest exists.


  1. 1.
    Mayes MD, Lacey JV Jr, Beebe-Dimmer J, Gillespie BW, Cooper B, Laing TJ, Schottenfeld D (2003) Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum 48:2246–2255PubMedCrossRefGoogle Scholar
  2. 2.
    Sakkas LI (2005) New developments in the pathogenesis of systemic sclerosis. Autoimmunity 38:113–116PubMedCrossRefGoogle Scholar
  3. 3.
    Nelson JL (1999) Microchimerism and scleroderma. Curr Rheumatol Rep 1:15–21PubMedCrossRefGoogle Scholar
  4. 4.
    Giusti B, Serrati S, Margheri F, Papucci L, Rossi L, Poggi F, Magi A, Del Rosso A, Cinelli M, Guiducci S, Kahaleh B, Matucci-Cerinic M, Abbate R, Fibbi G, Del Rosso M (2005) The antiangiogenic tissue kallikrein pattern of endothelial cells in systemic sclerosis. Arthritis Rheum 52:3618–3628PubMedCrossRefGoogle Scholar
  5. 5.
    Tan FK, Hildebrand BA, Lester MS, Stivers DN, Pounds S, Zhou X, Wallis DD, Milewicz DM, Reveille JD, Mayes MD, Jin L, Arnett FC Jr (2005) Classification analysis of the transcriptosome of nonlesional cultured dermal fibroblasts from systemic sclerosis patients with early disease. Arthritis Rheum 52:865–876PubMedCrossRefGoogle Scholar
  6. 6.
    Ahmed SS, Tan FK (2003) Identification of novel targets in scleroderma: update on population studies, cDNA arrays, SNP analysis, and mutations. Curr Opin Rheumatol 15:766–771PubMedCrossRefGoogle Scholar
  7. 7.
    Zhou X, Tan FK, Xiong M, Arnett FC, Feghali-Bostwick CA (2005) Monozygotic twins clinically discordant for scleroderma show concordance for fibroblast gene expression profiles. Arthritis Rheum 52:3305–3314PubMedCrossRefGoogle Scholar
  8. 8.
    Luzina IG, Atamas SP, Wise R, Wigley FM, Xiao HQ, White B (2002) Gene expression in bronchoalveolar lavage cells from scleroderma patients. Am J Respir Cell Mol Biol 26:549–557PubMedGoogle Scholar
  9. 9.
    Zhou X, Tan FK, Xiong M, Milewicz DM, Feghali CA, Fritzler MJ, Reveille JD, Arnett FC (2001) Systemic sclerosis (scleroderma): specific autoantigen genes are selectively overexpressed in scleroderma fibroblasts. J Immunol 167:7126–7133PubMedGoogle Scholar
  10. 10.
    Whitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A, McCalmont TH, Brown PO, Botstein D, Connolly MK (2003) Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci USA 100:12319–12324PubMedCrossRefGoogle Scholar
  11. 11.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  12. 12.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  13. 13.
    Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7PubMedCrossRefGoogle Scholar
  14. 14.
    Czech MP (2006) MicroRNAs as therapeutic targets. N Engl J Med 354:1194–1195PubMedCrossRefGoogle Scholar
  15. 15.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefGoogle Scholar
  16. 16.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  17. 17.
    Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, Stahle M, Pivarcsi A (2007) MicroRNAs: novel regulators involved in the pathogenesis of Psoriasis? PLoS One 2:e610PubMedCrossRefGoogle Scholar
  18. 18.
    Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB (2007) Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16:939–946PubMedCrossRefGoogle Scholar
  19. 19.
    Thomson JM, Parker J, Perou CM, Hammond SM (2004) A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1:47–53PubMedCrossRefGoogle Scholar
  20. 20.
    Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488PubMedCrossRefGoogle Scholar
  21. 21.
    Verrecchia F, Mauviel A, Farge D (2006) Transforming growth factor-beta signaling through the smad proteins: role in systemic sclerosis. Autoimmun Rev 5:563–569PubMedCrossRefGoogle Scholar
  22. 22.
    Smith EA, LeRoy EC (1990) A possible role for transforming growth factor-beta in systemic sclerosis. J Invest Dermatol 95:125S–127SPubMedCrossRefGoogle Scholar
  23. 23.
    Distler JH, Jungel A, Kowal-Bielecka O, Michel BA, Gay RE, Sprott H, Matucci-Cerinic M, Chilla M, Reich K, Kalden JR, Muller-Ladner U, Lorenz HM, Gay S, Distler O (2005) Expression of interleukin-21 receptor in epidermis from patients with systemic sclerosis. Arthritis Rheum 52:856–864PubMedCrossRefGoogle Scholar
  24. 24.
    Hebbar M, Jeannin P, Magistrelli G, Hatron PY, Hachulla E, Devulder B, Bonnefoy JY, Delneste Y (2004) Detection of circulating soluble CD28 in patients with systemic lupus erythematosus, primary Sjogren’s syndrome and systemic sclerosis. Clin Exp Immunol 136:388–392PubMedCrossRefGoogle Scholar
  25. 25.
    Gardner HA (1999) Integrin signaling in fibrosis and scleroderma. Curr Rheumatol Rep 1:28–33PubMedCrossRefGoogle Scholar
  26. 26.
    Cho JW, Cha YC, Lee KS (2008) AP-1 transcription factor decoy reduces the TGF-beta1-induced cell growth in scleroderma fibroblasts through inhibition of cyclin E. Oncol Rep 19:737–741PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Haitao Li
    • 1
  • Rongya Yang
    • 1
    Email author
  • Xin Fan
    • 1
  • Tingmin Gu
    • 1
  • Zhili Zhao
    • 1
  • Dongqing Chang
    • 1
  • Wenling Wang
    • 1
  • Congmin Wang
    • 1
  1. 1.Department of Dermatology and VenerologyBeijing Military Command General Hospital of PLABeijingChina

Personalised recommendations